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shown in $$80 and 97, entirely analogous results are possible for radiation
in the limit that k,,/1 <<1, where & is the photon mean free path.

The real problem arises near boundary surfaces where a mean free path

(photon or particle) may exceed any characteristic structural length in the
flow. We must then find other methods for evaluating the averages that
appear as the energy flux or as nonisotropic (perhaps even off-diagonal)

contributions to the stress tensor, in the fluid and/or radiation energy and

momentum equations. We have ignored this problem for ordinary fluids

because it becomes important only in extremely rarefied flows [e.g., the
interplanetary medium (H3)]. But it cannot be ignored for radiation

because we always must deal with regions in which A/l<< 1 while &/1>> 1;
indeed these are the very layers of a radiating flow that we can observe.

Here we must face the closure problem squarely.
In one-dimensional problems we have two equations containing the

three scalars Eu, F,,, and P., and one approach is to close the system with
variable Eddington factors f,,, as in (78. 16b) and (78. 19b). When solving

the moment equations we assume that f“ is known. We subsequently
determine fU from a separate angle-by-angle formal solution of the full

transfer equation assuming that the radiation energy density (which ap-

pears in the source function) is known; we then iterate the two steps to

convergence. As the value of ~,, converges, the closure becomes essentially
exact. In radiation-hydrodynamics calculations where computational speed
is paramount, a yet-simpler procedure is sometimes adopted: one uses

approximate analytical formulae to determine f from the geometry of the
problem and from that ratio (F/E) [see, e.g., (F2), (S4)]. G. Minerbo (M6)

developed an elegant formulation of this kind; Minerbo’s formulation is

useful also in multidimensional problems where the full Eddington tensor

f= P/E must be specified.
Alternatively, we can rewrite the transfer equation in terms of angle-

dependent mean-intensity-like and flux-like variables (see $83), and obtain

exact closure of two coupled angle-dependent equations that strongly
resemble the moment equations, and have many of”their desirable proper-

ties. These equations can be discretized and solved directly by efficient
numerical methods.

6.5 Solution of the Transfer Equation

We now address the problem of solving the transfer equation. To develop

insight we first discuss the formal solution and special solutions for impor-

tant special cases; we then discuss general numerical techniques. Inasmuch
as wc now focus mainly on mathematical rather than physical content of

the equations, we will usually use the Eddington variables ~,,, IYu, and ~u in
preference to the dynamical variables E,,, FV, and PU.

We concentrate almost entirely on the solution of the time-independent

transfer equation (the exception is an analytical expression for the time-
dependent formal solution). The techniques developed here provide a
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foundation for later work. Equally important, it turns out that ignoring the

time dependence of the transfer eqution itself is actually not a bad

approximation for many astrophysical flow problems. To see why this is so,
let us examine some characteristic time scales.

To deal with radiation flow (e.g., the propagation of a radiation front

into material) we must consider very short time scales, tR- UCor tk- AJc,
corresponding to a photon flight time over a characteristic structural 1ength
1, or over a photon mean free path AP. For such problems it is obviously

necessary to solve the full time-dependent transfer equation in order to
describe properly the dynamics of the radiating flow. In Chapter 7 we

analyze the relative importance of terms in the transfer equation for

moving media in the radiation flow limit, and some of the numerical
methods discussed in $7.3 can be used in this regime. Nevertheless, we

normally consider such problems to lie outside the scope of this book.
The primary concerns of this book is with problems of fluid flow on

typical dynamical time scales F - //v, where 1 is a characteristic length in

the flow, and v is a typical flow velocity; for example, 1 might be of the

order of a scale height H, and v of the order of the material sound speed a.
In an optically thin region, the ratio tR/tf is o(dc), which is a small number

in the astrophysical flows we will consider; in a stellar pulsation (v/c) -

1.0-4, in a stellar wind (v/c) -10-2, and even in a supernova explosion

(v/c)s 3 x 10-2. (In some flows, e.g., relativistic collapse or laser-fusion

experiments, $ can be very much shorter, approaching tR.)when tR~~$,

the radiation field at any position adjusts essentially instantaneously to

changes in physical conditions throughout the flow. This means that on
time scales appropriate to a calculation of flow dynamics we can ignore the

explicit time variation of the radiation field, and can consider it to be in a

sequence of quasi-steady states, each of which is consistent with the

instantaneous physical structure of the flow. We describe the radiation field
in this regime as quasi static or quasi stationary. Of course we must still
account explicitly for time derivatives of the radiation energy and momen-

tum densities in the energy and momentum conservation equations for the

radiating fluid, where these quantities appear on an equal footing with the

corresponding material terms (see Chapters 7 and 8). The same remark
also applies in the cases now to be discussed.

In optically thick regions (e.g., a stellar interior) the situation is different.
Here photons dijfuse by a random-walk process with a mean free path A,,

and we can essentially discard the transfer equation, replacing it with a

simple asymptotic solution (cf. $80). In the diffusion process a photon
suffers of the order of (l/AP)z interactions with the material as it travels a
distance 1; hence the characteristic radiation difision time is t~ - (12/cAp).
The ratio (tJ~) is thus O(kjApc). In the true or (static) difision limit, the

dynamical time scale of interest (e.g., a nuclear-evolution time) is so long

that tf >>t~ [with implies that (v/c)<< (&/01,andrandom-walkdiffusionsets
the response time of the radiation field to changes in physical conditions;
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because (l/LP) >>1, this response can be quite slow. At first sight it might
seem that we should adopt timesteps of the order of tdin our calculation,
even though we are not interested in radiation diffusion phenomena per se,

but wish only to follow events on the time scale ~. However, in this regime

the radiation field saturates to its thermal equilibrium value (see $80), with
high collision rates assuring rapid photon creation and destruction in the

dense material. Hence the radiation field is closely frozen to instantaneous

local conditions as they vary. Therefore, as we computationaljy follow the
time evolution of the fluid properties, we automatically track the time
variation of the radiation field, which simply passes through a sequence of

states in instantaneous equilibrium with local physical conditions as detel--

mined by the flow. In effect the radiation field is again quasi stationary.

If, on the other hand, the material is optically thick enough to trap
photons, but now (v/c) = (AJ1) so that p 5 t~, flow-induced changes in the

physical properties of the medium can drive changes in the radiation field
faster than they could have occurred if only diffusion were operative. We

refer to this regime as the dynamic diffusion limit. Here we must account
for the coupled time variation of the material properties and radiation field

by performing a time-dependent solution of both the momentum and
energy equations for the radiating fluid, and the radiation energy and

momentum equations, simultaneously, on a fluid-flow time scale.

In general we must use radiation moment equations that bridge the
optically thick and thin limits correctly, and we will see in Chapter 7 that it

is then essential to include terms that are formally of O(v/c). But, in any
event, the only reason we need to solve the transfer equation itself is to

obtain Eddington factors, required to close the moment equations. In most

problems these ratios, which reflect almost purely geometric information
about source distributions and boundaries, are given wi~h good accuracy by

a static snapshot, that is, a solution of the time-independent transfer

equation using current values of the physical properties in the flow.

In sum, we need to solve the full time-dependent transfer equation (in
distinction to moment equations) only when we wish to treat radiation

flow; but generally not if we wish merely to treat fluid flow. We thus see
that there is ample motivation for studying the time-independent transfer

problem.

79. Formal Solution

BOUNDARY CONDITIONS

The radiation field in any volume consists both of photons emitted by the
materiai within the volume, and of radiation that penetrates the bounding
surf ace of the volume from imposed external sources. The latter are fixed

by appropriate boundary conditions, which are needed to specify a unique
solution. For an arbitrary convex volume V bounded by surface S we must

. .. .
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therefore be given

I(xs, t; n, v) = ~(x~, t; n, v) (79.1)

for all x~ on S, along all rays n that penetrate into V (i.e., for n . N< O,
where N is the outward normal of S), at all frequencies.

In astrophysical problems the generality of (79.1) is usually unnecessary
because we consider planar or spherically symmetric geometries. In planar

geometry we encounter two classes of problems: (1) a jinite slab of
thickness Z, and (2) a semi-infinite atmosphere, which is a medium (such as
a stellar atmosphere) that has an open boundary surface separating vacuum

from material that is so optically thick that it can be imagined to extend to
infinity.

For the finite slab we must specify functions f+ and f- describing the

incoming radiation on both faces, that is,

1(2, t; /+ v) =f-(t; p,, v), &so, (79.2)

at the boundary nearest the observer (the top of the slab), and

1(0, t; p,, LJ)=f+(t; p, v), p,=o, (79.3)

at the farther boundary (the bottom of the slab).

For a semi-infinite atmosphere we have an upper boundary condition of
the form (79.2). In posing a lower boundary condition, we note that at very

great depth the radiation field must satisfy a boundedness condition

Iim [e -’”’~1(7”, t; p, v)]= o (79.4)
.“+=

for the solution to be well behaved mathematically. In practice the solution

must always be truncated at some large depth, where we impose a

boundary condition that expresses ~+ in terms of the local source function
and its gradient, or fixes the flux transported across the boundary. These

conditions follow naturally from physical considerations in the diffusion
limit (cf. $80).

In spherical geometry we deal with spherical shells or semi-infinite

spherical envelopes. For a spherical shell we have equations analogous to
(79.2) and (79.3) at r =1? (outer radius) and at r = rC(inner or core radius)

respectively. In the semi-infinite case, we use (79.2) at r = R, and apply the
cliff usion approximation at r = rC.

For time-dependent problems, the spatial boundary conditions must be
augmented by an initial condition that gives the radiation field within V at
t = O, that is,

1(x, O; n, v)= g(x; n, v) (79.5)

for all x within V.

...—
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THE TIME-INDEPENDENT FORMAL SOLUTION

Consider now the transfer equation for a static
that (d/dt) = O. Then in Cartesian coordinates

n“VI=q– XI
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medium (or steady flow), so

(79.6)

where all variables are functions of (x; n, v). The operator n . V = n i(d/t)x’)
is the derivative with respect to path length along the ray whose direction is

n. Radiation at x moving in direction n consists of photons that were

emitted along n from points along the line x – lx’ – xl n. It is therefore
convenient to let s be the path length backward along n, so that (79.6)

becomes

-$[I(x-ns; n, v)]+~(x–ns; n, v) I(x–ns; n, v)=q(x–ns; n, v).

(79.7)

In what follows we suppress mention of (n, v) for brevity.
Equation (79.7) is a Iinear, first-order differential equation, which has an

integrating factor exp [–~(sO, s)], where

J

s

7(s., s)= X(X– ns”) ds”, (79.8)
.,0

and so is an arbitrary point along n. Notice that ~ depends on both n and v.

Using (79.8) to rewrite (79.7) we have

–$ [1(x- ns)e-’(s@)] = e-’(s~’s)q(x–ns), (79.9)

whence

J

s<-!
I(x–ns)e-”(’os) – I(x– nsO)= q(x–ns’)e-’(s@’) ds’, (79.10)

s

or, finally,

J

‘(1
[(x – m) = e-’(s+JI(x – nsO)+ q(x–ns’)e-”(ss’) ds’. (79.11)

s

To obtain 1 at a specific x we set s = O, and choose SOsuch that x~ = x– sOn
lies on the boundary surface S. Then

J

s“

[1

s’

1(x; n, v)= q(x–ns’; n, u)exp – 1X(x–ns’r; n, v) ds” ds’
o 0

[J
(79.1.2)

so
+ f(x~; n, v) exp – 1X(x–ns”; n, v) ds” .

0

Equation (79. 12) is the general formal solution of the time-independent

transfer problem. It states that the intensity of radiation traveling along n
at point x is the sum of photons emitted from all points along the line
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segment x – ns, attenuated by the integrated absorptivity of the intervening

material, plus an attenuated contribution from photons entering the
boundary surface where it is pierced by that line segment. Note, however,

that the apparent simplicity of (79.12) is illusory, for if ~ contains scatter-

ing terms (which depend on 1), then (79.12) is an integral equation that

must be soloed for 1, and therefore brings us no closer to the answer than

the original differential equation. But if q is purely thermal, or is given, 1
can be computed from (79.12) by quadrature; this computation can be

done either by direct evaluation of (79.12), or by equivalent, efficient,

differential-equation techniques described in $83.

PLANAR MEDIA

Consider (79.12) for a static, planar, semi-infinite medium with no radia-

tion incident at the upper boundary (e.g., a stellar atmosphere). For

outgoing radiation at height z in the medium

J
z

1(2 ; p> u)= q(z’; v)e-(T~-T.)’w dz’/W, (0s ~ s 1), (79.13)
—m

or

I(TU ; ~, v)=
J“

SU(7~)e-(’-~ )f~ dT’/W,“ (os/-Ls l), (79.14)
r,,

where SU = WV/XU is the source function, and we have invoked (79.4).

similarly, for incoming radiation

!~“
I(T,, ; p,, v)= Su (T~)e(T-Tf)’wd~~/(–W), (-ls~ <0). (79.15)

o

Equation (79. 1.4) yields directly the emergent intensity seen by an ob-

server outside the atmosphere (~v = O):

[(0; ~, v)=
r

S. (Tu)e-’)W dru/p. (79.16)
o

If we assume that near the surface SV is given by the linear expansion

S,, = a.+ bvru we find

1(0; K, v)= au + b,,p = S(~v/W= 1), (79.17)

which is known as the Eddirzgton -13arbier relation. This important result

shows that the emergent intensity along a ray is approximately equal to the

source function at slant optical depth unity along that ~ay, that is, at about

one photon mean free path from the surf ace.

THE SCHWARZSCHILD-MILNE RELATIONS

We can also use (79.14) and (79.15) to obtain concise expressions for the

mean intensity and flux within the medium. Thus the mean intensity is
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Substituting w = *p ‘1 in the first and second integrals respectively, and

interchanging the order of integration, we find

which was first derived by K. Schwarzschild, and bears his name. Here

El(x) is the first exponential integral from the family

~“E.(x) = y-ne-’y dy = Xn-l
J“

y-ne-y dy, (79.20)
1 x

whose mathematical properties are discussed in (Al, Chap. 5).
By a similar analysis we derive

and

these expressions were first obtained by E. A. Milne (M5).
Equations (79. 19), (79.21), and (79.22) are used frequently in radiative

transfer theory, and are often abbreviated to an operator notation:

Jo

O.u(x)] = 2[J f(x)~z(x – T) dx –
J

.

1f(x)E,(T – X) dx , (79.24)
T o

and
r-=

Jo

The mathematical properties of these operators are discussed in detail in
(Kl, Chap. 2).

The exponential integrals all have the asymptotic behavior Em(x) - e-x/x
for x>> 1. Thus from (79.19) and (79.22) one sees that the values of J(T)

and ~(~) for ~ >>1 are effectively fixed by the value of S over a range
AT= +1 from the point in question. In contrast, the flux is given by a

differencing operator, its value being determined by the difference between
the amount of emission from deeper layers and that from shallower layers.

To illustrate, consider a linear source function S(7)= a + b~. From

....
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(79.14), (79.15), and (79.23) to (79.25) we find

I(T, p)= (a + b~) + bp,, (o=~s l), (79.26)

I(7, p,) =(a+b-r) +bv-(a+bw)e””, (-1 =K sO), (79.27)

~(~) = A.[S(t)] = a + br +~[bE3(T) – aE2(T)], (79.28)

FI(~) = #PT[S(t)] = ~b + ~[c@(~) – bEa(~)], (79.29)
and

K(T) = $~[s(t)] = ~(a + b7) +~[bE,(~) – aE.(T)]. (79.30)

From (79.26) to (79.30) we see that at great depth I(T, ~) contains an

isotropic component equal to S(T) and an anisotropic component propor-

tional to the gradient of S. Similarly, for 7}> 1, ~(~) ~ S(T) and K(7) ~

~S (~) hence f = K/J-~, as one expects because for ~>>1, I(7, W) becomes
essentially isotropic. Furthermore, 11(~) - ~b, which shows explicitly that
the flux depends only on the local gradient.

At the surface, boundary effects become important. Noting that Em(0)=
(n – 1)-’,one finds J(O)= ~a + ~b, showing that J(0)< S(0) if b is small. In

particular for b = O (isothermal medium), J(0)= ~S(0) as expected physi-
cally because J(O) is then the average of a hemisphere having no radiation

(p <O) with one in which 1= S = constant. If b = 2a, then J(o) a S(()), and
the contribution of photons from deeper, brighter layers outweighs the
dilution effects of the hemisphere with no radiation. Similarly H(O)=

~a + $b, showing that the surface flux is larger, the faster S increases

inward.

Finally, note again that when S contains a scattering term [e.g., equation
(77.7)], (79.19) is an integral equation for J.

TT.ME-D EPENDENT RADIATION FIELD

Suppose now that the material properties and the radiation field are
explicitly time dependent. The transfer equation in Cartesian coordinates is

then

c-’(dI/dt)+n” VI= q –xI. (79.31)

Again, the radiation moving in direction n at (x, t) consists of photons
emitted in direction n from points along the line x’ = x – xs at retarded times
t’ = L– CS,where s measures path length backward along the ray. In terms

of s, (79.31) can be written

,[( )1 (–~ 1x–ns, t–~; n,v
)( )

+x x–ns, t–i; n,v I x–ns, t–~; n,v
c c c

[79.32)

( )=rI x–ns, t–~; n,v .
c

Equation (79.32) admits an integrating factor, yielding the indefinite
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integral

JI(x, t;n, v)= q(x–n,s’, t–s’/c; n’, v)

[J

(79.33)
s,

x exp – 1X(x–ns”, t–s’’lc; n, v) ds” ds’.
o

The physical interpretation of (79.33) is straightforward: the intensity at
(x, t) is the integrated contribution of photons emitted in direction n from

all x’ = x– ns, at retarded times t’ = t – s/c, attenuated by the time-

dependent opacity the photons encounter as they travel from x’ to x.
The solution (79.33) is incomplete because it does not match initial

conditions imposed on 1 at t = O, or account for photons entering the

boundary surface S. To account for boundary conditions we restrict the

range of integration along n from s = O to s = so = Ixs – xl, and add a source
term localized to SOfor all t >0. To match the initial condition we add a
source term at t = O whose value equals T(t = O) for all s s SO,and restrict the

range of integration over the emissivity to retarded times t’ a O along the

ray. I“hus in (79.33) we formally replace q by

ij(s) = q(x–ns, t – s/c; n, v) H(t–s/c) +(1/c)g(x; n, V) H(SO–s) 8(t)

(79.34)
+f(xs, t; n, v) 8(s – so)fI(t),

where El is the Heaviside function [H(x)= O, x = O, and H(x) = 1, x > O], 8

is the Dirac function, and f and g are given boundary conditions as in

(79.1) and (79.5).

Substituting (79.34) into (79.33) we obtain

~

so

1(x, t; n, v)= q(x–ns’, t–s’/c; n, v) H(t–s’/c)
o

[J
s’

X exp – 1X(x–ns”, t– S“IC; n, v) ds” ds’
o

(79.35)

[J
Ct

+g(x–net; n, U)exp – 1X(x–ns”, t– s“/c; n, v) ds” H(so– et)
o

[J

so

+f(x–nso, t–so/c; n, v) exp – 1X(x–ns”, t – s’f/c; n, v) ds” H(ct– ,s.).
o

The first term in (79.35) accounts for all photons emitted by the material,
suitably attenuated, from retarded times t’> O. The second term matches
the solution onto the initial conditions at t’ = O unless t is so large that the
ray already penetrated the boundary surface at a retarded time t~=
t – so/c> O; in this event the third term comes into play and imposes the

known boundary condition at x = x~ for the correct retarded time t~.
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80. The Diffusion Limit

In the interior of a star we reach the dijfusion limit where the optical depth
is large, photon mean free paths are small, and photons diiluse through the

material in a random walk. Because the radiation is efficiently trapped, and
the average temperature gradient in a star is so small, the radiation field is

thermal to a high degree of approximation.

Thus for TVj> 1, SV - B,,, and in the neighborhood of any chosen T“, $,

can be represented by

where B ‘“)= (&BV/d7~). Here we tacitly assume the medium is planar“
because photon mean free paths are so small that curvature effects are

negligible. If we substitute (80.1) into (79.14), for O< K = 1 we find

The result for – 1< ~ <0 differs from (80.2) only by terms of o(e-’.flwl),

hence for ~u >>1 we can use (80.2) for the full range –1 = K s 1. From

(64.2), (65.5), and (66.8) we then find

J,(TV) = Bu(’rv) +*(t)’B”/dT:) + . . .

(80.3)

H. (7.)= +(aB”/dT”) + :(d3B./a’T;) + . . . (80.4)
and

KV(TU)= ~BV(TV)+ ~(r32J3J@,)+ . . . . (80.5)

We now ask how quickly these series converge. To obtain order-of-
magnitude estimates of the derivatives we approximate them by difference

quotients: (#’BU/&~) – BU/~~.Then the ratio of successive terms in (80.3)

to (80.5) is 0(1/~~) = 0(A~/12) where 1 is a characteristic structural length.
In a stellar envelope a conservative estimate of 1 is Ef, the pressure scale

height, which in the Sun ranges from 102 km near the surface to =103 km
in the interior. Thus representative values for (kU/1) lie on the range 10–7 to

10-’0, implying a convergence factor of order 10-14 to 10-20 for the series.
Hence we need only the first terms of (80.3) to (80.5), but we must retain

two terms in (80.2) because it is the small asymmetry produced by the
gradient that yields a nonzero flux.

Thus, well inside an opaque, static medium an asymptotic solution of the

transfer equation is

~P(Tu)= 3KU(TV)= BU(TU) (80.6)
and

EIU= 1(E)BJ13TU)= –~(t@,/?T)(dT/dr)/XV. (80.7)

These results are consistent with (79.28) to (79.30) for ~ j>1; (80.7) also

follows immediately from (78. 19) for f.= ~. Thus far we have shown only
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that (80.6) and (80.7) apply in a static medium; we will see in $97 that they
also apply in the comoving frame of a moving medium when velocity-

gradient terms are neglected.
Equations (80.6) show that in the diffusion limit the radiation energy

density and radiation pressure have their equilibrium values despite the
anisotropy in the radiation field; only if we carry terms of 0( A~/12) in

(80.3) and (80.5) is there a departure from equilibrium, but, as we have
seen, such terms are truly negligible. Furthermore, (80 .7) shows that the

radiation flux is also a local quantity that depends on the local temperature
gradient. Indeed, integrating (80.7) over frequency we find

F= (L/47rr2)= –(4rr/3)
[Jm 1X~l (~B../~T) dv (dT/dr), (80.8)

o

which shows that for T-V>>1 the radiant heat flux has precisely the same

mathematical form, F = –KRVT, as molecular heat conduction in a gas. In
terms of the Rosseland mean opacity XR (cf. $82) defined by

X;l ~
[J”

Xj’ (dBv/dT) dv1/[ (FU3JaT)dv, (80.9)
o

the effective radiative conductivity is

lC~ = (4rr/3X~)(dB/dT) = $cA~a~T3, (80.10)

where AR is the mean free path corresponding to ~. This expression for

K~ is exactly what one expects from the mean-free-path arguments of S29:

the conductivity is proportional to the product of (1) the energy density
associated with the transporting particles (photons) divided by the temper-

ature, (2] the particle speed, and (3) the particle mean free path [cf.
(29.23)].

Insofar as it predicts that the energy density and hydrostatic pressure of

the radiation field are fixed by the local temperature, while the radiative
flux is proportional to the temperature gradient, the diffusion-limit solution

of the transfer equation is closely analogous to the first-order Chapman-
Enskog solution of the Boltzmann equation for material gases. For moving

media the analogy can be pushed even further (cf. $97), and one finds that

P contains viscous terms proportional to the rate of strain tensor.
It is important to note that the diffusion-limit flux is a very small leak

compared to the radiation energy density. Thus define the eflective tempera-
ture T.fl of a star such that

L = 4n-R2U~T& (80.11)

where L and R are the stellar luminosity and radius; from (68.9), T.fi is the
temperature of an equivalent black body of radius R that radiates a total
luminosity -L The emergent flux is

F= mRT~fi; (80.12)

—
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this net energy flux (erg cm-z s-~) is transported by particles (photons) that
have velocity c, hence the effective energy density associated with the flux

is F/c. The total radiation energy density in the field is E = (47r/c)B =
4U~T4/C, hence

(Effective energy density in radiation flow)

()

_ (~RT&/c) = & 4,
(Total energy density of radiation) (aRT4/c) T

(80.13)

For a star like the Sun, T.fi = 6 X 103 K, whereas interior temperatures are

-107 K. Thus in the solar interior the leak is about one part in 1012; very

small indeed ! In contrast, near the surface T= T.fi, and the energy density
associated with freely escaping photons is the energy density of the field
itself.

From (80.8) and (80.9) we obtain one of the standard equations of stellar

structure, that is,

dT –3x~ L,

dM, = 16 CTRpT3 (4rrr2)2 ‘
(80.14)

where dMr = 4rrr2p dr is the mass in a shell of radius r and thickness dr,
and L, is the luminosity passing through a sphere of radius r. In stellar

interiors work (80. 14) is viewed as an equation that determines the

temperature gradient; but it has deeper significance as an asymptotic

solution of the radiative transfer equation. Notice that dM, is a material

element, hence M, can be used as a Lagrangean variable if the material

moves (e.g., stellar pulsation). We show in $97 that (80.14) remains valid in
moving material provided that we neglect terms of O(Apv/ k), and we

measure all quantities, including L, (or F,), in the comoving fluid frame.

Similarly the time-independent energy equation (78.8) for a static
medium can be rewritten as

J J(dL,/dM,) = (47r/p) ‘(q. - XUJV)dv = (47r/p) ‘XV(SW–Ju) dv.
o 0

(80.15)

If we adopt a source function of the form (77.8), scattering terms cancel
identically and we obtain

~
(dL,/dM,) = (47r/p) ‘~V(BU - J,,) dv, (80.16)

o

where Ku is the thermal absorption coefficient, and in writing T,, we
assumed LTE. One might expect from (80.6) that in the diffusion limit the
right-hand side of (80.16) will vanish identically. Physically this would
correspond to a state of radiative equilibrium (cf. 378), in which the

material emits exactly the amount of energy it absorbs, and the luminosity
is independent of radius. However, in the deep interior there can also be
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an irreversible release of thermonuclear energy at a rate of s ergs gm–’ s–’,
which chives a luminosity gradient. The thermonuclear energy released in a

mass shell is E cM,, which for a steady state must equal the change in
luminosity across that shell; accounting for this additional term (80.16)

reduces to its standard stellar interiors form

(dL,/dM,) = s. (80.17)

A more revealing derivation of (80.17) in $96 shows that it is only the

static limit of a more general energy equation representing the first law of
thermodynamics for the composite matter-radiation gas [see (96. 10) and

(96.11)].
Finally, we show that in the limit of large optical depth, the transfer

equation can be manipulated into a time-dependent diffusion equation for

the energy density. First, in the diffusion regime we can neglect the term

c-2(dF./dt) in (78.10) compared to the right-hand side which, in the fluid

frame where x and q are isotropic, reduces to (XVFv/c), because the time
required for photons to random walk a distance 1 is At - (1/AP)2(AP/c) =

12/A,c, hence the ratio of the terms in question is

c-’(t)Fu/t)t)/()@,,/c) - (1/xc At) = (Ap/02 - ~ 0-’8 (80.18)

for typical values 1- H = 103 km and A, -10-’1 Cm. Thus we can use the

static form of (78.11) restated as

F“ = ‘CX~l VP. = ‘~CX~’ VEV, (80.19)

where we made use of the isotropy of P.. Substituting (80.19) into (78.3)
we have (for a static medium)

(80.20)

which, as asserted, has the same form as the time-dependent diffusion

equation (df/dt) = V’f+9’ where Y’ is a source-sink term.

81. The Wave Limii
Having seen that, at large optical depth, the transfer equation behaves like

a diffusion equation, we now show that in a vacuum (x. = q. = O) it reduces
to the wave equation, which is to be expected from classical elec-

trodynamics. Although one obtains a perfectly unattenuated wave only in

true vacuum, the radiation field also approaches this free streaming limit in

optically thin media.
In the absence of material the transfer equation (76.3) becomes

(d I/dr)+ C(auds) = o (81.1)

where s measures the pathlength along the ray n. Defining 17= 1(x, t; n, v)

—
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and l–=l(x, t; –n, v), (81.1) yields

(aI+/at) + c(aI+/ds) = o

and

(dI-/at) - c(dI-/as) = o.

Now define the mean-intensity-like quantity

j =$(’++ ~-)

and the fluxlike quantity

h ~~(~+ – ~-);

then (81 .2) and (81 .3) can be added and subtracted to produce

(dj/dt)+c(dh/ils) = O
and

(dh/dt) + c(dj/ds) = O.

Equations (81 .6) and (81 .7) combine into the wave equations

(t12j/EJt2)= c2(d2j/ds2)
and

(d2h/dt2)= c2(d2h/as2),

which have the solutions

j(s, t)= Al~l(s – Ct) + A2fz(s + Ct)
and

h(~, t)= B ,fl(S – Ct)+ B,f2(S + Ct).

(81.2)

(81.3)

(81.4)

(81.5)

(81.6)

(81.7)

(81.8)

(81.9)

(81 .10)

(81.11)

We recognize these as traveling waves moving along &n. As usual, the

constants Al, . . . . B2 are determined by initial and boundary conditions.

Equations (81. 10) and (81. 11) imply that one can construct a particular

solution of the form

l(x, t;n’, v’) =10 8(s–et) ti(n’ -n) i3(v’ -v), (81..12)

that is, a monochromatic plane wave traveling along n with velocity c. As
noted in S66, for such a wave ~V= HU= ~.

Wave equations also follow from the moment equations once we know

that solutions of the form (81.12) exist. Thus if we choose n = k in planar

geometry, (78.3) and (78. 10) become

(dJ”/dt) + c(WIv/dz) = o (81.13)
and

(dHU/dt) + c(dKV/~z) ==O, (81.14)

and because .7. = K. for a plane wave, (81.13) and (81.14) combine to give

(dZ.I./at’) + c2(d2J./dz2) = o (81.15)
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and

(d’HJdt’) + c’(a’Hv/dz’) = o, (81.16)

which are standard wave equations in planar geometry.

In spherical geometry (78.5) becomes

(t)Ju/tit) + (c/r2)[d(r2Hu)/dr] = O, (81.17)

while (78. 11) reduces to

(WIu/dt) + (c/r2)[d(r2.1,.,)/f3r] = O (81.18)

when we recall (66.10) and demand Ku = J.. Equations (81.17) and (81.18)
combine to yield

(d2.TV/dt2)= (c2/r2)[d2(r2JV)/dr2]= C2V2JV (81.19)

and

(d’H,,/at’) = C’v’kfu, (81.20)

which are standard wave equations in spherical geometry,

82. The Grey Atmosphere, Mean Opacities, and Multigroup Methods

MOTIVATION AND ASS UMFITONS

We now consider a highly simplified problem, which provides valuable
experience in solving the transfer equation: radiative transfer and energy

balance in a static LTE medium composed of grey material (one whose

absorption coefficient is independent of frequency). This problem can be
solved relatively easily and completely, and yields reasonable estimates of

the run of the physical properties in the outer layers of stars, thus giving (1)

moderately accurate boundary conditions for stellar envelope and interior

calculations, and (2) starting solutions for iterative methods for handling

more accurate treatments of the physics.
For grey material X.=X, and the transfer equation (77.5) becomes

~ (f31J&) = 1. – s“. (82.1)

Integrating over frequency we have

fJ (dI/EJT)= I – s, (82.2)

where quantities such as I, J, H, K, B, and S without subscripts denote

frequency-integrated variables, for example,

J

.

I= IVdv. (82.3)
o

Because the medium is static, it must be in radiative equilibrium; hence

47T
J“

XJV dv = 4m
[

XVSVdv, (82.4)
o
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which, for grey material, reduces to .l = S. Thus the transfer equation to be

solved is

/J(W(h)= I – J (82.5)

which is a homogeneous iutegrodifferential equation for T, posing what is
called iWilne’s problem. The Milne problem is to be solved for J(T) [hence

S(7)] from which we compute 1(7, p) and K(-r). We already know that
H(T) is constant in radiative equilibrium [cf. (82.7)].

With the additional assumption of LTE, S.= 13P, hence

~[~(T)] = m~T4/m= S(T) = J(7). (82.6)

Therefore if we can determine ~(~) from (82.5), then (82.6) allows us to

associate a temperature with the radiation field at each depth.

GRJ3Y MOMENr EQUATIONS

Calculating the zeroth moment of (82.5) we obtain

(dH/d7)=J– S= J–J=O, (82.7)

which shows that the flux is indeed constant. The first moment yields

(dK/d~) = H, (82.8)

which has the exact integral

K(7) = H(T+ C), (82.9)

where C is a constant. For 7 j> 1, ~(~) -+ 3K(7); hence (82.9) implies that
when ~>>1, .f(~) = 3H7. This result suggests a general expression for J(7) of

the form

J(7) = 3~[~ + q(T)], (82.10)

where q(r), the llop~ function, is a bounded function, to be determined. In

terms of q(~), (82.9) becomes

K(T) = H[7 + q(~)]. (82.11)

The solution of the grey problem consists of the calculation of q(T).

Given this function we can determine the run of temperature with depth
from

(82.12)

which follows from (82.6), (82.10), and (80.12).

A wide variety of methods have been developed for determining q(~);

these are discussed at length in (C6) and (Kl); in fact, it is possible to

obtain an exact solution in closed form. We shall not review this large
literature here, but will discuss only two methods: the simplest approxima-
tion, which yields roughly the right answer, and a second, which yields
accurate answers for the grey problem and also provides the basic ap-

proach used in solving more complex transfer problems.
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THE EDDINGTON APPROXIMATION

To obtain an approximate solution of the grey problem, Eddington made
the simplifying assumption that the relation ~(~) = 3K(7), valid at great

depth, holds throughout the entire medium. Although Eddington’s approx-

imation is not exact, it is nevertheless reasonable. For example, the relation

J = 31K holds (1) in the diffusion regime where 1(7, I-L)= 10(~) t ll(~)K; and
(2) in the two-stream approximation where 1(T, p) = 1-’-(7) for Os ~s 1 and

1(7, ~)= 1-(7) for – 1 ~ K s O for arbitrary (but I-L-independent) values of
1+ and l-. The latter provides a rough representation of the radiation field
near the boundary of a semi-infinite medium, for we may let 1–/1+ -+ O as
r-+(), and 1–/1+-1 for T=l.

From (82. 10) and (82. 11) we see that Eddington’s approximation is

equivalent to writing

JE(7) = 3H(T + c’), (82.13)

where the constant C’ is to be determined. To fix C’ we use S = J~ in

(79.21) to calculate the emergent flux, obtaining

rH(O) =@ (~+ C’)E2(T) d~ = &IIE.(0) + C’E3(0)] = +H(~+ ~C’).
o

(82.14)

Demanding H(O) = H we find C’= $. Thus in the Eddington approximation
@ (T)= $,

J~(~) = 3H(~ + ~) (82.15)

and
T4 = ~T~fi(~ + ~). (82.16)

The exact solution of the grey problem gives q(0)= l/&= 0.577. ... and
q(m) = 0.710+ . . . compared with q~ = 0.666 . . . . Not surprisingly, the error

in q~ and J~ is largest at the surface; one finds AJ(0)/3ex,c,(0) = 0.15. On

the other hand, (82. 16) predicts (TO/Tefi)~ = (~)”4 = 0.841, which agrees

– (Jfi)’/4 = 0.811. Thus Eddington’s approximationwell with (TO/T~ti)~~~~~— “
does provide a good first estimate for the temperature structure of a grey

atmosphere. Note also that (82. 16) predicts T = T.lI at ~ = ~; for this reason
~ =; is often co~~sidered to be the effective depth of continuum formation

in a semi-infinite medium.

Furthermore, using (82.15) in (79.16) we find

1~(~=0, p)= H(2+3LL), (82.17)

which shows that the radiation field is peaked in the direction of outward
flow; indeed l~(p. = 1)/l~(K = O) = 2.5. Using (82.17) to calculate Y and K
at T = O we find JE (0) = @ and K~ (0) = $@Z, whence the variable Edding-

ton factor at the surface is f~ (0) = = =0.405; the exact solution yields

~(0) = q(~)/3q (0) =0.410. These results are important because they show
that using even a rough estimate ~= $) of the Eddington factor to solve the
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transfer equation we obtain a source function that yields a reasonably
accurate angular distribution of the intensity, from which we can compute a

much better estimate of f throughout the entire atmosphere. We return to
this point in $83.

THE METHOD OF DISCRETE 0R01NAH3S

while Eddington’s approach gives useful results, it lacks accuracy and
generality. We can also solve the grey problem by rewriting (82.6) exp-

licitly as an integrodiff erential equation

and approximating the integral as a quadrature sum. In this procedure a
function ~(p) defined on – 1 s ~s 1 is sampled at a set of quadrature points
{1.L~}, (m= +1, . . . . =tiVf), where O<w,. s 1 and p-~= –p.m. Applying
standard techniques of numerical analysis, one can generate a set of
quadrature weights {bn} defined such that the definite integral in (82. 18) is

represented as a weighted sum over the discrete ordinates {f(~., )}, that is,

(82.19)

This procedure assumes, in effect, that f(w) is the unique interpolating

polynomial of order 2M– 1 that passes through the 2A4 ordinates {~(~~)}.

For the transfer problem we thus represent the angular variation of

1(7, K) by a set of pencils of radiation Ii= 1(7, w), and replace the
integrodifferential equation (82. 18) by a coupled set of ordinary differential

equations:

One thinks of each pencil [~ as giving an average of l(IA) over a definite
range of v around pm. On physical grounds it is reasonable to expect the

solution to become increasingly accurate as M increases, and to limit the
exact solution as M ~ ~.

The method of discrete ordinates described above provides an extremely
powerful tool for solving transfer problems, and it will be exploited heavily

in $383 and 88, and in Chapter 7. For the grey problem, Chandrasekhar
(C6) obtained a complete analytical solution of (82.20), which matches the

boundary conditions and gives constant flux; furthermore, by studying the
limit M ~ cc he deduced many properties of the exact q(~). The full exact
solution was first obtained by completely different (Laplace transfom)

methods, discussed in (Kl) and (M2, Chap. 3).
The accuracy of a quadrature formula depends both on the number of

quadrature points used, and on their distribution within the interval. A
good discussion of methods for constructing quadrature formulae is given
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in (C6, Chap. 2). In Newton- Cotes formulae the {~,,, } are equally spaced;
for 2M points the quadrature is exact if 1(K) is a polynomial of order

52M – 1. A more favorable choice is the Gauss formula, in which the {W~}

are the roots of the Legendre polynomial Pz~, and which is exact if J(W) is
a polynomial of order =4M —1. An even better choice for transfer

problems is the double-Gauss formula suggested by Sykes (S5), which is

now universally used. Here one uses a separate A4-point Gauss folmula on

each of the subintervals [– 1, O] and [0, 1], the points being the roots of PM

suitably shifted and scaled from [– 1, 1.] to each subinterval. (An important
exception is that for M = 1 one must choose I-L*I = +1/~.) The quadrature

is exact if l(IA) is a polynomial of order s2M– 1 on each subinterval.
Although for a given number of points the formal accuracy of the double-

Gauss formula is lower on each subinterval than the ordinary Gauss
formula, for transfer problems it is vastly superior because 1(+ I-L) and

1(–K) are approximated independently, hence it can account for the fact
that as 7-0, 1(–P) e O while 1(+ K) remains finite. The ordinary Gauss

formula spanning [–1, 1] tries, in effect, to integrate through the discon-
tinuity at ~ = O, and naturally loses accuracy in doing so. Quadrature

points and weights for double-Gauss formulae are given in (Al, 921).

THE NONGFUZY PROBLEM

The opacity frequency-spectrum of real material is complicated (cf. $72),

and in solving realistic transfer problems we confront the difficult question

of how best to model this spectrum. Several approaches have been de-
veloped; each has strengths and weaknesses, which, for any particular

problem, must be weighed carefully. Typically a compromise must be made

between accuracy and economy of computation.

One obvious approach is the direct method in which a large number of
frequency points are chosen so as to represent all the major features of the

opacity (e.g., continuum edges and strong lines); one then solves the
transfer equation or the moment equations at each of these frequencies.

This approach is satisfactory for material with a relatively simple spectrum

(e.g., in hot stars where the dominant processes are bound-free and
free-free absorption by H, H+, He, He+, and He++; Thomson scattering by

free electrons; and absorption in a small number of strong lines) and in

such cases it can yield accurate results. But for complex spectra (e.g., in

cool stars with millions of atomic and molecular lines) the direct method is

prohibitively costly, especially for dynamical problems. Let us therefore
consider alternatives.

MEAN OPACmIES

The simplest possible solution of the nongrey problem would be obtained if
a single mean opacity could represent correctly the total transport of
radiation through the material; the nongrey problem would then reduce to
an equivalent grey problem, whose solution is known. Not surprisingly,
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such a reduction is not possible in general, basically because opacities enter

nonlinearly in transport processes. Nevertheless, certain mean opacities

have important physical significance and permit considerable simplification

of the nongrey problem in some regimes, while providing useful approxi-
mations in others where they are not rigorously correct. Here we discuss

only planar geometry, but mean opacities can be used in any geometry.

(a) The Rosseland Mean The key role usually played by radiation in a
radiating fluid is the transport of energy. Can we define a mean opacity

that guarantees the correct total transport of radiant energy? We will

obtain the correct total flux from the first moment equation (78. 16) if ~ is
chosen such that

J !“ldK “
——”dv= H,, dv=H=–:$;=– A

J

“ i?K— “ dv. (82.21)
o x“ ~z o Xodz

or

J

.

/!
~ = (tlKu/dz) dv ‘X; ‘ (dKU/Elz)dv. (82.22]

o 0

The difficulty in obtaining the correct ~ in general is clear from (82.22): we

must know K,, to compute ~, but to determine K,, we must solve the full
nongrey problem.

However, in the diffusion regime Ku ~ ~BV, and ~ then reduces to the
Rosseland mean defined by (80.9). Thus in the diffusion regime we can
rep] ace an arbitrarily complex opacity spectrum by a single average that
guarantees the correct radiative energy transport; this is why the Rosseland

mean is universally used in stellar interiors work. Furthermore, in LTE, XV

is a function of T and p, while BV is a function of T only; hence XR can be

computed once and for all as a function of local state variables.
Note that XR is a harmonic mean, giving greatest weight to the most

transparent regions of the spectrum. Thus opaque features (e.g., strong
lines) affect jy~ mainly by reducing the bandwidth through which efficient

energy transport can occur. A change in the absolute strength of opaque

features has little or no effect on XR; but the addition of a continuum

source and/or many faint lines to an otherwise weakly absorbing spectral
region raises the minimum value of x,, there, and can increase X(Z signific-
antly.

From (82.21) it follows that, even when the material is not grey, in the

difision limit (dK/dr~) = ~(dB/d~~) = H, where H = (m~T2ti/47r), and TR =

–f xR dz. Hence the temperature distribution for ~R >>1 in a static nongrey

medium in radiative equilibrium is accurately given by the modified grey
relation

T’= :T:fl[~R + q(~R)]. (82.23)

Detailed calculations for nongrey radiative-equilibrium atmospheres show
that (82.23) is in fact an excellent approximation at depth, and provides a
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good starting estimate for iterative methods (cf. $88) at the surface. Of
course, (82.23) cannot guarantee flux conservation when the diffusion

approximation breaks down; thus near a boundary surface the Rosseland

mean may seriously underestimate the effective opacity and may yield poor

results for radiative energy balance (C3).

(b) The Flux Mean Instead of energy transport we might focus on
momentum balance and choose a mean that gives the correct radiation

force on the material. From (78.12) and (78.17) the radiation force on a

static medium is

J“f~ = (4dc) x#. dv ; (82.24)
o

the same expression holds for moving material if all quantities are meas-

ured in the comoving frame (cf. $96). Thus the correct radiation force

results if ~ is defined by

~“ J“)@,, dv = ~ H. dv = ~H, (82.25)
o 0

whence

)/H G J“XVHVdv/H, (82.26)
o

which is called the flux mean.

Like the Rosseland mean, XH does not allow a complete reduction of the
nongrey problem to an equivalent grey problem. Moreover we cannot

compute x~ until we know ~, which is obtained only by solving the full
nongrey problem. But in the diffusion regime (80.7) implies that ~ is
identical to the Rosseland mean:

(XH)difFusicm =
J IJ

‘(W3u/dT) dv ~Xj’ (@,/tlT) dv = XR. (82.27)
o 0

Thus in the diffusion limit, the Rosseland mean yields not only the correct
energy transport, but the correct momentum balance as well. For this

reason the Rosseland mean is often chosen as a representative opacity for
use in the momentum equations in problems of radiation hydrodynamics.

(c) The Planck Mean and The Absorption Mean Other definitions of
mean opacities result from requiring correct values for the total energy

emitted or absorbed by the material. For a static LT’E medium the
right-hand side of the radiation energy equation (78.4) reduces to

47r j~ K. (B. – J.) dv even when scattering terms are present. The same
expressions holds for moving media provided that all quantities are meas-
ured in the comoving frame (cf. $96). To obtain the correct total emission

.. . ..-. .
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we thus define a mean opacity k such that

which is called the Planck mean. Notice that, like the Rosseland mean, Kp

can be computed once and for all as a function of p and T.
To obtain the correct total absorption we must use the absorption mean

KJ defined by

But, like ~, KY cannot be evaluated unless we have solved the full nongrey

transfer problem. It is therefore important that we can show that, in the

optically thin regime, KP provides a reasonable estimate of the total
absorption and thus serves as a useful substitute for KJ, just as ~ does for

~ in the diffusion regime.
In particular, to achieve radiative equilibrium we should choose k such

that

When the material is transparent (~v cc 1 at all frequencies), .lU is essentially
fixed, and the integrals in (82.31) are dominated by the frequencies at

which K. >>2. For ?s 1 we can represent B. by a linear expansion

B,,(t) = BV(7) + (dBv/@(t – 7) = B.(;) + (E/Kv)(i3B,,/&F) (tu – T.),

(82.32)

whence, by application of the A operator, we obtain

In the limit 7+0, E2~l and E3 -+ ~, and (BV-Jw) =
~B. – ~(E/Kv)(dBu/@. The second term is least important when K.>> k, that
is, precisely when the first term makes the largest contribution in (82.31).
Hence we most nearly achieve energy balance in optically thin material if k

satisfies

J

.
$2 Budv=$

r
KVBVdv, (82.34)

o

that is, if R = Kp.

Thus Kp is a good representative opacity for use in the radiation energy
equation. On the other hand, use of Kp in the fist moment equation does
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not yield the correct flux in the diffusion limit, and we again conclude that
no one mean opacity completely reduces the nongrey problem to a grey

problem.

MEAN-OPACITY REPRESENTATION OF THE MOMENT EQUATIONS

In LTE,

(dH/dz) = KPB– KJJ (82.35)
and

(dK/dz) = -*H (82.36)

are exact frequency-integrated moment equations. But to solve these

equations one must know KJ and XH, which implies, solving the nongrey

equations. An effective method sometimes used to handle transfer and

energy balance in nongrey media is to rewrite (82.35) and (82.36) as

(dH./dz) = K,(B – krJ) (82.37)
and

(dK/dz) = -~k&I (82.38)

where the ratios kJ = (KJ/Kp) and k~ = (M/M) are to be determined

iteratively, starting from an initial estimate of unity (or values from the

previous time-step in a dynamical calculation—see $7.3).

The idea is to use (82.37) and (82.38) along with a constraint of energy

balance to determine the temperature distribution, and then perform a

frequency-by-frequency formal solution of the transfer equation, using the
new temperature distribution, to update (JU/J)and (l-IU/H), and then k~
and kH With these improved estimates of k, and kH we can repeat the first

step to determine an improved temperature distribution. Each step of this
iteration procedure is relatively cheap. Nevertheless it presupposes that
frequency-dependent opacities Ku (p, T) are available (which may not be

true), and that we are willing to calculate the full frequency spectrum of the

radiation field; in practice it may prove too costly in dynamical calculations

for hundreds or thousands of timesteps. We then have little choice but to

adopt k~G 1 and kH = 1; although the results so obtained are not exact,
because in general Kp is not the correct absorption average nor does w

equal w except in the diflusion regime, they provide nonetheless a
reasonable first approximation.

MULTIGROUP METHODS

The preceding discussion points out that detailed simulation of the opacity

spectrum by the direct approach is generally too costly, while replacing it

by one or two representative means maybe too crude; we therefore seek a
middle ground. “rhe weakness of the mean opacity approach is that it

averages over the entire spectrum. Given large fluctuations in K. and the
possibility of large differences between B. and -T., it is obvious that KP, say,

is unlikely to equal KJ exactly. However it is much easier to define a

. .
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meaningful opacity in a narrow spectral range, and one asks whether it is

possible to represent the physically important features of the opacity

spectrum with a few (but more than one or two) astutely chosen parame-

ters. Two such methods have been suggested and widely applied.

In the first, the multigroup method, the spectrum is divided into a number
of frequency groups, each of which spans a definite range (v~, v~.,l). Within

each group, source terms and radiation quantities are replaced by values
that can be viewed either as integrals over the group, for example,

(82.39)

(82.40)

(and similarly for H, and K,), or as representative constant values within
the group. The zeroth moment equation for group g in a static LTE
medium is then

(dH,/dz) = Kp,gBg – &Jg, (82.41)

where the group Planck mean is

(82.42)

We must now decide what value is to be assigned to Eg to obtain the

correct total absorption in the group. If we were to take literally the picture
that .18 is constant within (UK,v~+l), then we should use the straight average

opacity

J

~m.+I
kg = % dd(v~+l —Vg). (82.43)

..

However, if we use (82.43), then at great depth where Ju -+ B,,, we do not
necessarily recover equality between the energy absorbed and emitted

within the group (ie., between ~~~ and Kp,gBg) even though J~= B~,
because we have used different weighting schemes in (82.42) and (82.43).
Furthermore, in the limit of using only one group, (82.43) is not at all

reasonable physically. For these reasons it is usually argued that the
multigroup zeroth moment equations should be written as

(dH,/dz) = Kp,g(~g - J,), (82.44)

which reduces to the mean-opacity method for a single group. On the other
hand, in the optically thin limit there is no rationale for weighting the

absorption term by the Planck function, that is, for replacing =~ with Kp,g,

and it may actually be preferable to use kg as defined in (82.43) (e. g., in an

optically thin layer illuminated by a perfectly smooth continuum having a

radiation temperature markedly different from the local material tempera-
ture).
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By similar reasoning, the first moment equation for group g can be
written

(dK,/dz) = -,i&HZ. (82.45)

Here one argues that to obtain the correct total flux transport we should
use a harmonic mean for ~~. Again if we literally take Kg to be constant in
a group we would use the simple harmonic mean

(x,)-’ = (“’’”’x;’ dv/(v,..l - v,). (82.46)
Ju,

But this choice of ~, does not necessarily yield

diffusion limit; to guarantee that we should write

(dK,/dz) = ‘&H,

where x~,~ is the group Rosseland mean

the correct flux in the

(82.47)

~

~,+, l’~“.+.1

(xR,g)-’ = x;] (dBu/dT)dv (dBV/dT)dv. (82.48)
~. V.

ln most multigroup formulations, (82.47) is used in preference to (82.45).
Like (82.44) for the zeroth moment, (82.47) provides a reasonable rep-

resentation in the limit of one group; (82.45] does not, but may be more
realistic for optically thin material.

in summary, the formulation of the multigroup method is not unique,

and the results are unavoidably somewhat ambiguotis. The method is least
accurate for coarse frequency groups, for which there can be significant

differences among the various group means, leading to the same problems

as in the mean-opacity method. It gives increasingly better results as more,
and finer, groups are used, because then the details of the weighting

procedure are less important and the various group averages become more

nearly equal; of course it also becomes more costly.

OPACITY DISTR[BUTION FUNCTl ONS

The second important technique for handling radiative transfer in complex

spectra uses opacity distribution functions (ODF). The ODF method has
been applied extensively in astrophysics and yields excellent results in a
wide variety of situations (C3), (Dl). Here the whole spectrum is divided
into a number of frequency intervals. For a calculation of the total radiative

energy and momentum transport in each interval, the exact position of a

particular feature (e.g., a spectral line) within the interval is not important;
instead, we need to know the fraction of the interval that is relatively

transparent (continuum), moderately opaque (weak lines), or very opaque
(strong lines). Therefore in each interval we compute the opacity at a large
number of uniformly spaced points and bin similar opacity values; we thus

construct a distribution function giving the value of the opacity versus the
cumulative fraction of the interval covered by opacity less than or equal to
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this vafue-see (K3, 3–7) or (M2, 167–169). This function is smooth and is
well represented by a relatively small number of pickets, each of which

covers a prechosen fraction of the interval with a constant opacity equal to
the average of the distribution function in that band; an example is shown

in (K3, 7).
For each picket we write a transfer equation (or moment equations); in

these equations the opacity now has a unique value, which eliminates the

ambiguity of the multigroup method. In this respect the ODF is similar to

the direct method, and can be viewed as a way of degrading unwanted
details of the opacity spectrum (which act as high-frequency “noise”) to the

minimum level required to give correct energy transport. (The multi group

method did just the opposite: it reduced the over] y severe filtering inherent
in whole-spectrum means by applying the averaging scheme over smaller

intervals.)

THE OPACITY SAMPLING TECHNrQUE

We just mention one other approach: the opacity sampling technique (S3).
Here one solves the transfer equation using actual opacities at a large
number of frequencies chosen at random throughout the spectrum. This

method has been used successful y to construct static model atmospheres,

but it does not seem easily adaptable to dynamical problems so we will not
discuss it further.

83. Numerical Methods
Analytical solutions of transfer problems are rare, and in most cases of

interest we must use numerical methods. We describe here an approach

that has proven to be general, flexible, and powerful in treating both

radiative transfer and its coupling to the constraints of energy and momen -
turn balance and to the equations of statistical equilibrium. For the present

we consider only time-independent transfer in static media; we extend the

method to other cases in later chapters.

THE PROBLE.Vl OF SCAflT3RlNG

An important obstacle encountered in solving transfer problems is the

scattering term, which decouples the radiation field from local sources and
sinks, and introduces global transport of photons over large distances. This
term permits an open boundary to make itself felt at great depth (~. >>1) in

the medium, and allows .lV to depart significantly from B. even at depths
where one would have expected them to be identical.

Scattering terms may appear explicitly in the source function. For

example, S. may have the form [cf. (77.8)]

s.= Lv3u+(1–t”)L (83.1)

where [v is the thermal coupling parameter

&u= &/(% + ~v). (83.2)
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In astrophysical media, <v can sometimes be quite small. For instance, in

hot stellar atmospheres Thomson scattering can be the dominant opacity
source, and ~U may be of order l.O–4 into very deep layers of the
atmosphere. in spectral lines, the thermal ization parameter s in (77.11) can

be very small, and because r<. 1, .$V will also be small, say 10-8 or even

less.

To see the implications of dominant scattering terms, consider the
following simplified problem. Suppose the depth variation of the Planck

function is

B“ = au + burp, (83.3)

and that ~V is depth independent. Using (83.1.) in the zeroth moment
equation (78. 15) we have

(aH”/dT,,) = &,(Jv - Bv), (83.4)

and the first-order moment equation is

(dKu/dTV)= Hv. (83.5)

Making the Eddington approximation Ku = ~Jv we can combine (83.4) and
(83.5) into

i(d2J,../r3~i)= &U(JV– f3u). (83.6)

Because (d2BU/@ from (83.3) is zero, we can replace JV in the second

derivative by (JV – B“). Solving, we obtain

J.= 13u+ au exp [–(3fv)1’2Tu] + ~v exp [(3 fv)’’2Tu]. (83.7)

The unknown constants a. and /3,, are determined by boundary condi-

tions. At great depth we demand .JU-+ B., hence 13v= O. At the surface we
use the 13ddington-Krook boundary condition Ju(0) = & II.(0) (which is

consistent with the exact solution of the grey problem). But from (83.5) we

can also wri’te H,,(0) = ~(d.TV/~7U)O;evaluating the derivative from (83.7) and

applying the boundary condition we find au, and thus obtain finally

Equation (83.8) reveals the essential physics of the problem. For simplic-

ity consider an isothermal medium (b. = O). First, we see that Ju can depart

markedly from B. at the surface; ~v(0) = ~~’2Bv/(1 + t~’2) = t~’2B. for f. Z<
1. Thus for f.<< 1, J,,(0)<<B,,(0). Second, this departure extends to great
depths in the medium. The slow decay of the exponential in (83.8) implies
that J. 4 B. only when TV= (~.]-”z; the values f. quoted above show that

this therrncdizution depth can be orders of magnitude larger than ~v – 1.
We can easily understand why the thermalization depth is so large from

physical considerations. The parameter .$Uis essentially the probability per

—-
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scattering event that a photon is thermally destroyed. To assure thermaliza-

tion, the photon must scatter on the order of n - I/&U times. Because the

photon executes a random walk, in n scattering it will travel nl’z - Cjl’z

mean free paths in any direction, in particular toward the boundary

surface. Thus when the point of photon emission is at a depth TV~ &j”z the
probability that the photon will be thermalized before it escapes ap-

proaches unity, hence J. -+ BU.

These results have important implications for developing numerical
methods that can handle scattering terms successfully. For example, sup-

pose that instead of solving the problem as we did above, we decided to
compute JV = A(S,,,); because Su contains J., this is an integral equation. To
avoid solving the integral equation directly we might try to proceed by

iteration. Suppose we take JV= B,, as a first guess. Using SW= B. we

compute a new estimate of .TU;using this J,, we then calculate a new value

of S., re-evaluate the lambda operator for J., and iterate. We saw in $79
that the kernel of A has an exponential falloff, which implies an effective
information-propagation range of only Ar - 1; in the present problem one
would therefore need to perform at least ~J 1’2 iterations (a large number!)

to propagate information about the existence of the surface [and the large
departure of J,,(0) from B“ (0)] over the entire therm alization depth. This

failure also applies to all other equivalent methods that attempt to find Su

by an iteration like the one just described (which we refer to generically as
“A iteration”).

We were able to obtain the correct solution (83.8) because we solved the

problem by an analytical method that dealt explicitly with the scattering
term. We conclude that any successful numerical method must do likewise,

that is, scattering terms must appear explicitly in the source function, and
the method must solve the resulting equations directly. In fact, the situa-

tion can be even more complex than we have indicated because scattering

terms can be “hidden” in other aspects of the problem. For example, if we
demand radiative equilibrium, the requirement that f XVSUdv = f XJUdv
imposes a coupling of S. to JV that implies that S. will behave like a

scattering term; this is seen clearly in the grey problem where S = Y, and
the transfer equation (82.5) is the equivalent of a pure scattering problem
(i.e., g,, = O). Furthermore, we will see in $87 that when we drop the

assumption of LTE, the equations of statistical equilibrium also imply the
presence of scattering terms in the source function.

The discussion leading to (83.7) and (83.8) also shows that in solving

transfer problems we must deal with the two-point boundary conditions
posed by (79.2) to (79.4); the same will be true for any numerical method.

One might try to evade this problem by integrating the transfer equation
from, say, the deepest point in the medium to the surface, using as initial
conditions a guess for l–(~n,ZW, K) at the lower boundary, along with
l+-(~n,.X, W) given by the lower boundary condition. However, unless the
guess for 1- is perfect, the values computed for 1-(0, 1A)will not agree with
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those specified by the upper boundary condition. One must then try to

make a new guess for l–(l-n,,W) that would yield improved agreement
between the computed and imposed surface values of l-.

Not only is this eigerwalue method [l-(-r~,~X,~i) is to be determined for

all ~i <0] inefficient, it is also strongly unstable. Note that the solution

(83.7) contains both ascending and descending exponential; the latter is

the true solution, the former is a parasite. Unless we suppress the parasite

[as we did analytically in deriving (83.8)], it tends to run away and swamp

the true solution. To avoid such problems, our adopted numerical method

must explicitly treat the two-point boundary-value nature of the transfer
problem from the outset [see (M2, 150–151) for further discussion].

SECOND-ORDER FORM OF THE TRANSFER EQUATION

A powerful computational method for solving transfer problems is based

on a second-order form of the transfer equation. Consider a static, planar

medium. Choose the column mass dm = —p dz or

J

z ., :!,

m(z) = ~(Z’) dz’ (83.9)
z

as independent variable; this is a Lagrangean variable suitable for dynami-
cal calculations. Note that m increases downward into the medium; the

opposite convention is used in stellar structure calculations where M,
increases outward \vith radius, cf. $80. Let

clJ(v]=x(v)/p (83.10)

be the opacity per gram, in terms of which we write optical depth
increments as d~u = au dm.

For radiation moving in two antiparallel pencils =tK, we have two

transfer equations

+K[dl(+K, v)/dm] = CO(V)[I(+W, v) – S(v)], (83.1.1)

where for brevity we suppress explicit mention of m dependence. As in

$81 define a mean-intensit~-like variable

j(w, v] =*[l(+w, v)+ 1(–w, v)], (os~sl), (83.12)

and a tiuxlike variable

h(~, v) =~[1(+~, v) – l(–W, v)], (Oswsl). (83.13)

Then adding the two equations (83.1 1) for *p, we obtain

~[dh(~, v)/~m] = ~(v)fi(~, v)– S(V)], (83.14)

and subtracting them we have

~[dj(~, u)/~m] = ~(v)h(~, u). (83.15)

These equations, first derived by P. Feautrier (Fl), strongly resemble the
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zeroth and first moments of the transfer equation, but with two important
differences: (I) they contain only j and h (i.e., the system closes), and (2)

they are angle dependent.

Using (83.15) we can eliminate h from (83.14), obtaining the second-

order equation

%i&$#l=’(”v’-s(v) (83.16)

or, in abbreviated notation,

~2(d’jWV/d~~) = jWu- S,,, (Oswsl). (83.17)

These equations, supplemented by boundary conditions, can be solved by

efficient numerical algorithms to be discussed shortly. We stress that in
solving (83.16) and (83.17), any scattering terms in S. are to be written out
explicitly; this introduces integrals of jM. over angle (and sometimes over

frequency) on the right-hand side. Having solved (83.17) for j(~, v) we can

find h(p, v) from (83.15).

An important property of (83.14) to (83.17) is that they are accurate in

the diffusion regime. Thus if we integrate (83.17) over K we find

J“ = s“ + (d’Kv/cl’T:), (83.18)

which in the diffusion regime yields

Jv = Bv + ~(d2B1,/@, (83.19)

agreeing with (80.3) to second order. Similarly the integral over angle of K

times (83. 15) yields the first term of (80.4) in the diffusion limit; as the next
term is of third order, this implies the flux is accurate to second order.

Experience shows that (83. 14) to (83.17) behave correctly at both small
and large optical depths.

BOUNDARY CON D rrTONs

To obtain a unique solution of (83.17) we must impose boundary condi-

tions at ~ = O and ~ = ~n,a.. At ~,,= O, we usually set 1(–I+ u)= O; hence

from (83.12) and (83.13) hWv(0)= jW,,(0), and (83.15) then yields

w(dJd~u)o = L. (o). (83.20)

In a finite slab, at r = r.,= we specify l(rn,U, +LL, v) = I:.; from the
identity hwu(r,,,ax )= C-L.(T.. =), (83.13 then becomes

w (dwJ~~u)7,,,,,x= ~~u-j&,,(~n.ax) (83.21)

Equations (83.17), (83.20), and (83.21) are sufhcient to specify the run of

j~. with depth in the slab-
In a semi-infinite medium we can impose the diffusion approximation at

Tn,u and take 1(7.,U, 1A,v) = 1?. (7~~) + w (~B./~7.)..,:m, whence jw. = B,, (~max)
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and /t&v(~,,,=) = ~ (dBu/d~,.,)T,max;(83.21) then reduces to

(djw,,/dT”)T.,,,x= (W3”/dT,,)T,,,,w= [(cM3./dT)(dTldnWw,l.n,aT. (83.22)

Alternatively we may wish to specify’ the total flLlx H transported across
the lower boundary. In the diffusion limit we have

(83.23a)
or

/1
(dT/dm) = 3H ‘CO; ‘(dB./dT) dv; (83.23b)

o

hence from (83.22)

(83.24)

Equations (83.17), (83.20), and either (83.22) or (83.24) are sufficient to

specify the run of jWv with depth in a semi-infinite medium.

DISCRETIZATION

We now convert the differential equation (83.17) and its accompanying

boundary conditions into difference equations by a discretization of all
variables. We choose a discrete set of angle points {I-Lint},(m = 1, . . . . ?@,

and frequency points {u.}, (n = 1, . . . . IV), spanning the ranges O~1-L ~ 1

and Os us CYJ.We divide the medium into a set of D mass shells whose

boundaries are specified by the mesh {m~}, (d= 1, . . . . D + 1); each cell has
a mass m~+(~,~) = md+l – m~. In general, the mass cells will be of unequal

size. Variables whose values are specified at cell centers are given half-

(integral indices [e. g., jd,.(l)z).rn~-j rnd+(l/2), %, “~n)]. Variables specified on
cell surf aces are given integer indices [e.g., h~~n = h (m~, p.~, vm)]; see Figure

‘d+2, mn

md+ rftd rkj+l md+2

Z(J-I z~ Zd+, Zd+z

Fig. 83.1 Centering of radiation variables on Lagrangean mesh.
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Integrals are replaced by quadrature sums, for example,

I

.
y(v)dv+ f Uny(vn) (83.25a)

o K=[
and

J

1

y(w)dv+ f LLY(A1, )- (83.25b)
0 ,rI=l

For example, source functions such as (77.8) and (77-11) are represented

as

‘dJ-(1/2),n = ad-F(L/2),n f ‘~d+(l/2),k+~d+(l, z),n.
(83.26)

k=l

The first term in (83.26) is the scattering integral, and the second is the

thermal term. Here we have grouped all combinations of angles and

frequencies into a single serial set with index k = 1,....K = MN [e.g.,
(I%, ‘k) G (L% ‘vR) where k = m + (n – I)M], and Wk is a combined weight
for both angle and frequency quadrature, which may include a prdile

function.
Similarly, derivatives are replaced by difference formulae, for example,

(d2~/d72)~+(L,2) = [(dd~)d-, - (dX/dr)il/AT~+(,,,)>
where

(dx/d~)d = [X~+(,,2)– x~_(l,z)]/A7~.

Thus defining

A7~~ ‘~[~~-(~lz),k Amd-(1/2j + ‘d+(l/2j,k Amd--(]/2)]>

and
A7d+.(l,z],k=:(ATdk + A~d+l,k)>

a second-order accurate difference representation of (83.17) is

*,d~(,,2,,k[(&)~d+(3/2)k-wt(~+&)jd+(/2)k

+(&)jd-2kl=Jd--2k-sd+2k
(k=l.,..., K), (d=2,

(83.27)

(83.28)

(83.29)

(83.30)

(83.31)

,., D–1)

where s~+(~,z),k is given by (83.26). [Fourth-order accurate difference

equations can be written using Hermite integration formulae (A6).] These
(D – 2) sets of equations must be augmented by two sets of boundary

conditions.
Consider first the upper boundary. From (83 .14) we have

hzk = h ~k+ [A~(g/~)k/Pk][~(,/z)k– ‘(3/2)(c]> (83,32)

where A~(3,2)~- ~[g,z)k Amql~. From (83.15),

‘2k = ~k[i(5/2)k – j(3/2)k]iAr2k. (83.33)
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Applying (83.20) from the surface of the uppermost cell

have

jlk = ‘Lk = ~k[j(3/2)k–jlk]/$ ‘T(3/2)k>

whence

jlk = ‘Ik = j(3/2)k/(1’~ AT(3/2)k/Wk).

373

to its center we

(83.34)

(83.35)

Using (83.33) and (83 .35) in (83.32) we obtain the desired boundary
condition

~k [j(5/2)k – j(312d/A~2k = j(3)2)k/[1 + ~A~(312Jk/A]

+ [AT(3/2)k/Wk][~ (3/2)k – $3/2) k]. (83.361

To obtain a lower boundary condition, we can use (83.21), (83.22), or

(83.24). In particular, (83.24) implies

(83.37)

Equation (83.37) is on Iy of first-order accuracy, but this is usually sufficient

in the diffusion regime. Using Hermite formulae it is possible to write

third-order accurate boundary conditions (A6).

Equations (83 .31), (83 .36), and (83.37) comprise DK equations in the

same number of unknowns {j~_(l,z),~; let us now consider how they are to

be solved.

THE FORMAL SOLUTION

The simplest transfer problem, called the formal solution, is to calculate the

radiation field at all depths, angles, and frequencies when the source

function is known [e.g., in an LTE medium (SU = BV)] whose temperature

structure is given. The formal solution is also used to evaluate variable
Eddington factors in certain iterative procedures discussed below.

Represent the depth variation of j for a particular angle and frequency

(~k, ~k) by the column vector

jk = [j(3/2)k> j(5/2)k2. -., j13+(U2hk], (83.38)

and the (known) depth variation of s(~k) by

sk = [S@,z)k, s(f,~)k, . . . . SIJ+(l/z),k]. (83.39)

Then the transfer equation (83.31) and boundary conditions (83.36) and

(83.37) for j~+(l,z),k (d= 1,. ... D) are of the form

Tkj~ = Sk, (83.40)

where Tk is a (D x D) tridiagoncd matrix.

The sol ution of (83.40) is effected by a standard Gaussian elimination
scheme [cf. (83.52) to (83.54)], which requires of the order of CD opera-
tions, where c is a numerical constant of order unity. If we have a total of

K angle-frequency choices, the computational effort to obtain the full
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radiation field scales as cDK = cDMN, which is irreducible because we
wish to determine DK values of j. On vector computers, several systems of

the form (83.40) can be solved in parallel, resulting in an enormous

increase in efficiency.
Having determined j~ .(l,l),~ for all d and k we can calculate the

moments
(83.41)

m

and

Kd.,.(,,2,,n= ~ b~h~~j~+,llzj,~m, (83.42)
“n

‘[and hence the Eddlngton factor ,fd+(l)z),m — Kd+(lj2),n /.Td.,(L,21,n] for d =
1, . . . . D. Using the difference representation of (83.15) we can calculate
hd~ and hence fluxes on the cell boundaries

H~,L= ~ bn,pmh~mn, (83.43)
m

for d =2, . . . . D. The flux at the lower boundary is fixed by the lower

boundary condition. At the upper boundary we calculate j,~ using (83.35),

and can then evaluate

and

The geometrical factors ~“1. and Al. will be used to pose boundary

conditions for the radiation moment equations [see (83.61)].

THE FEAUTRIER METHOD

A more realistic transfer problem is to calculate the radiation field when

the source function explicitly contains scattering terms as in (83.26). We

solve such problems by two different methods. In the Feautrier method
(Fl), one defines vectors

hV2) = ~d+(l/2),1> jd+(U2),2> . . . 3 Jd-W/2).K]2 (d=l,... >ll),

(83.47)

containing all angle-frequency components of the radiation field at a single
depth, and vectors

L-(1/2) - [@d+(l/2),1> ~cL-(1/2),2> . ..> ~d+(l/2),Kl, (d=l.,..., D),

(83.48)

containing the angle-frequency components of the thermal source term.
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The transfer equation (83.31) plus boundary conditions (83.36) and

(83.37) can then be written as a block tridiagord system of the form

‘Ad+(v2)jd-(va + Bd+-( U2)jd+( L/2) – cd+(l/2)ii+(3/2)

= L~+(l,2), (d= 1,... ,D), ‘83”49)

The matrices A, B, and C are all of dimension (K x K); A and C are
diagonal, containing portions of the finite-difference operator for all

angle-frequency points down the diagonal. B is a full matrix containing

terms from the difference operator down the diagonal, plus diagonal and

off -diagonal terms coupling radiation at each angle-frequency point to all
others through the quadrature sum for the scattering integral in (83.26). [If

Hermite formulae (A6) are used, A and C are also full.] The upper
boundary condition implies that Aqlz = O, and the lower boundary condi-

tion implies CD+(1,2)= O.
Equations (83.49) are solved by Gaussian elimination. At level d + ~ we

express jd+(l/z) in terms of jd+(3/2)and use this expression to eliminate

id+(m) from the next equation. Starting at the upper boundary We have

j3/2 = @Zj2C3/2)j5/2 + (B;;2L3/2) = D3/2j5/2+ V5/2. (83.50)

Substituting (83.50) into (83.49) for d = 2 we find

j5/2 = (B5/2 – ‘5/2D3/2) ‘1 C5/2j~/2 + (B5/2 – &/2D3/2)-’ (L512+ AS,Z~S/Z)

- D5,zjT,2+ V5,2, (83.51)

and in general we have

jd+(l/2) = Dd+(u2)jd+(3/2) + ‘d--(l/2)2 (83.52)

where

Dd+(l /2)= [%(u2) – Ad+.(, ,2)Dd_(1,2)]-’ Cd+(l/2), (83.53)
and

‘[~d..(~,~) — Bd+(l ,2)– Ad+(m@d-(1 /2) ]-’[Ld+(,/2) + Ad+(l/2)Vd-(]/z)].

(83.54)

We compute Dd+(l,z) and vd+(l,z) for d = 1 through d = D – 1.. At d = D,
cD+(l/2) = 0, and jD+(l/2) ‘VD+[U2). Having found j~+(l,z) we obtain all other

jd+(L,2,for d = D – 1, D – 2, . . . . 1 from (83.52) by successive back substitu-

tion. From jd+(l/2),one can evaluate J~+OEM and sd+(l/2),n Usiw ww-

priate angle (or angle-frequency) quadrature. The forward-backward sweep

enforces the two-point boundary conditions, and the explicit appearance of

scattering terms guarantees correct therm alization. The method is compu-

t ationally robust. To estimate the computational effort, we note that a

solution of a full linear system of order n requires 0(n3) operations; there
are D such systems, hence the total effort scales as CDK3 = CDM3N3.

VARIABLE EDDINGTON FACTORS

In the Feautrier method, the scaling of the computational effort as the cube

of the product of the number of angles and frequencies is very unfavorable.
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Clearly it is essential to eliminate any angle-frequency information about
the radiation field that is not absolutely necessary. In this vein, we note

that typical scattering kernels in static media (or in the fluid frame of

moving media) are isotropic, hence only J,,, not jk,,, enters. This simplifica-
tion holds even when the transfer equation is coupled to constraints of
energy and momentum balance, and to the statistical equilibrium equations

(cf. $88). We therefore eliminate the superfluous angular information by
using moments of the transfer equation, closing the system by use of
variable Eddington factors.

Thus, integrating (83. 17), (83.20), and (83.24) over angle we obtain

cf(f”.J.)/a7: = J“ – s., (83.55)

[d(fJu)/aT,,,]~ = H.,(o), (83.56)

and

[df”L)/~~.lT.,2,x= [(H/tiv)(aBu/dT) /jma;’(dBp/dT) du] .
0 ~,m.x

(83.57)

The finite difference form of (83.55) is

1

[ (f’d-(m).lJd-(m),n 1 ~ 1 )fcl+(l/2),nJd+-(1/2,,,1
A7~+[l/2),,1 A7~n Ardn ATd..l,n

+fd-b(3/2),nJdT(3/2),rI

1

(83.58)

= ~d+(l/2),n– ‘dT(l/2),rI> (d=2,...,1) l).
/iTd~.l,m

The lower boundary condition can be represented as

@D::2).1.r%)D+(1,2J~@D:,2),.f#)D(1,2,”‘83”59)n

By an analysis similar to that leading from (83.32] to (83.36) one finds that

~,n = ff\M~Ln = &f(3/2)nJ(3/2)n itil,t ‘iAT(3/2)n&n); (83.60)

hence the upper boundary condition can be written as

[f-(5/2)tJ(5,2)”l- fmnJ(3/2)nl/A~zn = ‘l,tf(3,2),I~(3,a,,i[fln +&,3,2),, &ml

+ AT(3,2)n[.T(3,2),,- S,3,z)n]. (83.61)

Equations (83.58) to (83.61) are of the same form as (83.49) and are
solved by the same Gaussian elimination scheme. But now the computa-
tional effort scales as CDN3, lower by a factor of A43; in typical calculations

IVf=3 or 4.
To solve (83.58) to (83.61) we must know f. at all depths and A.LUat the

surface. We proceed iteratively: (1.) From a first guess fol- S. (e.g., SV = B.)
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we carry out a formal solution, which yields jwu at all angles, frequencies,

and depths. (2) We then calculate f,, at all depths from (83.41) and (83.42),

and y“lv and Alp from (83.44) and (83.45). The essential point is that the
Eddington factors are determined with substantially better accuracy than

the radiation field itself because they are shape factors that depend only on
the ratio of radiation moments. For instance, local scale-factor errors in J.

and Ku simply drop out. (3) Given f. and 41., we solve (83.58) to (83.61)
using expressions for S,, in which scattering terms appear explicitly. In this

step, one obtains the correct thermalization properties of .TU.(4) We then
re-evaluate SU using the new value of JU; this updated SV will, in general,

differ from the original S.. We therefore recalculate new fv’s via step (1.),

and iterate to convergence.

If T iterations are required to achieve convergence, the total computing
effort scales as l(cEIMIV + c’ lllV3) c<c“~A131V3 for moderate values of M

and 1. Experience shows that the Eddington -f actor iteration generally

converges rapidly (1 — 3), so that substantial savings are realized.

THE RYB ICKfMETHOD

An alternative to the Feautrier method was devised by Rybicki (RI). In
Feautrier’s method, all frequency-dependent information is grouped to-

gether at each depth, and the solution proceeds depth by depth; this
method can handJe an explicit frequency dependence of the scattering

terms, such as those that arise in partial redistribution problems. But in

many problems the scattering term is independent of frequency; for
exanlple, in line formation with complete redistribution only the quantity

~= J C~VJVdv appears, In such cases the frequency information retained by

the Feautrier method is redundant, and Rybicki showed that the system

can be reorganized in a way that has more favorable computi rig-time
requirements.

Assume that the source function has the form S. = au~+ /3., and let

(83.62)

represent the run of ~ with depth. Then at each angle-frequency point k
the transfer equation has the form [cf. (83.40)]

T~j~+U~~=K~, (k=l,..., K), (83.63)

where TIC is a (D x D) tridiagona] matrix representing the differential

operator, U~ is a (El x D) diagonal matrix containing the depth variation of

the coefficient ~d.~(l)z),k of the scattering term, and K~ is a vector of length
D containing the depth variation of the thermal source term D&(l/2),k. in .

.
addltIon we have 11 ecluatlons that define .~A(l/2), namely

7d+(7/2)=f ‘d+(l/2).kjd,-(1 /2),k, (~= ~, . . , ~) (83.64)
k=l
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which are equivalent to the matrix equation
.

~= f V~j~ (83.65)
k=l

where each V~ is a (D x D) diagonal matrix containing the depth variation

of the quadrature weight for angle-frequency point k in (83.64).
The system comprising (83.63) and (83.64) can be solved efficiently. For

each k we solve the tridiagonal system (83.63) to find the vector A~ and

the matrix B~ in

Substituting (83.66) into (83.65) for all k we develop the final system

C~ = D, where C is the full (D x D) matrix

C=I+ f vkB~, (83.67)
k=]

and D is a vector of length D,

D= $ VkAk. (83.68)
k=l

We solve the final system for ~, from which we calculate Sk, the run of the

source function at angle-frequency point k o\er depth. One can then find

any desired jk from (83.66).
The calculation of each Bk requires 0(112) operations, as does the

multiplication by V~ and summation into C. Solution of the final full

system requires 0(D3) operations. Hence the total computing effort scales
as C132K -t C’D3 = CD2MN+ C’D3; in practice the first term us LLally ctomi -
nates. We now see the advantage of the Rybicki scheme over the Feautrier

scheme: the computing effort varies linearly with the number of angle-

frequency points, rather than as the cube; therefore Rybicki’s method is

preferable for problems with large numbers of angles and frequencies. On
the other hand, Rybicki’s method works only if the scattering term is

frequency independent, whereas Feautner’s method can handle partial

redistribution. Furthermore, with Feautrier’s scheme it is relatively easy to
impose constraints of energy and momentum balance, and to couple the

transfer equation to the equations of statistical equilibrium (cf. $88),
whereas imposition of these additional constraints makes Rybicki’s scheme

prohibitively costly. One should analyze each problem to determine the

relative cost of the two methods, and choose the one that is optimum [see
(M2, 161) and (M2, $12-3)].

SPHERICAL GEOMETRY

While planar geometry is often adequate in astrophysical transfer prob-

lems, to study extended envelopes or the structure of a star as a whole we

-. —
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must work in spherical geometry. Using variable Eddington factors, one

can write the transfer equation for spherical media in a form that closely
resembles the planar equation.

On a radial optical depth scale d~u = –Xv dr, the moment equations
(78.18) and (78.19) are

d(r2EIV)/d7V = r2(J,,– Su) (83.69)

and

[d~JU)/d7V] - (3fV – l) Ju/XVr = Hv. (83.70)

One cannot derive a simple second-order equation by substituting (83.70)
for H,, directly into (83.69). But we can cast the left-hand side of (83.70)
into a more convenient form by introducing a sphericality factor q,, defined
(A5) such that

(83.71)

whence it follows that

JIn q. = r [(sf. - 1)/r’f.l dr’, (83.72)
r=

where rCis the core radius, that is, the inner boundary of the medium. Note
that q. is a geometrical factor on the same footing as f., and is determined
if fv is given.

Using (83.71) we can rewrite (83.70) as

iN$,cjJu)/&” = q.m, (83.73)

which, when substituted into (83.69) yields the combined moment equation

(83.74)

Defining the new variable dX. = (qulrz) dr., we rewrite (83.74) in the
second-order form

~2(fLaJv)/~X= (r4/qv)(L– S). (83.75)

To obtain an outer boundary condition at r = R, define the geometrical
factor

1
& = HV(R)/.JU(R)= j’1(R, I+ V)Wd~iJ I(R, ~, V) d~. (83.76)

o 0

Then from (83.73) we have

d(f.qJ.)/dXp I,=R = AuR’J,,(R). (83.77)

At the inner boundary we apply the diffusion approximation, fixing the
temperature gradient by demanding the correct total flux transport as in

. .
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(83.23) and (83.24). We then have

where 3-IC= L/(16 rr2r~).
Equations (83.75), (83.77), and (83.78) can be discretized on a spherical

mesh and solved by the Feautrier scheme. The mesh may represent either a
set of surfaces of constant radii, {ri}, (i = 1, . . . . 1+ 1), with r, = rC and
rr.l., = R, or a set of mass shells {Mt}, where Mi is the total mass contained
inside rt. These choices are convenient for Eulerian and Lagrangean
calculations, respectively. In the latter, the radiation flux is placed cm cell
surfaces, and the mean intensity, radiation pressure, and material proper-
ties are located at cell centers. The computing effort to solve the system for
N frequencies scales as cfN if there is no frequency coupling in the source
function, and as C1N3 if there is.

To carry out the computations just described we must know the Edding-
ton factors. These are determined from a frequency -by-frecluency formal
solution for given values of S. using either of two methods. One method is
to solve the transfer equation (76.9) along rays tangent to a set of spherical
shells (see Figure 83.2). If s measures the path length from the symmetry
axis along such a ray, it is easy to show that the differential operator

K(ddr) + r–’(l – I-L2)(d/dI-L) is identically (~/ds). Hence if 1* denotes the
intensity traveling along +s, (76.9) becomes

+[dP(s, p, v]/~s] = X(r, v)[S(r, v) – I*(s, p, v)], (83.79)

I rc ‘i JJ+l -rI+l
1 ,2

Fig. 83.2 Ray geometry in spherical symmetry.
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where p is the impact parameter of the ray and r = r(s, p)= (s2 + p2)J ‘2. If
we define

Cb(s, p, v)= –x[r(’s, p), v] ds, (83.80)

j(s, p, IJ)=+[l+(s, p, v)+ 1-(s, p, v]], (83.81)
and

h(s, p, v) =+[l+(s, p, v) – 1-(s, p, v]]; (83.82)

then the sum and difference of equations (83.79) yield

[a’z(s, p, I’Jyrh(s, p, u)]= j(s, p, v) - S(S> p, 2/) (83.83)
and

[dj(s, p, v)/&-(s, p, v)]= /?(s,p, v), (83.84)
hence

[dzj(s, p, z)/&2(s, p, v)]= j(s, p, v) – S(s, p, v). (83.85)

TO discretize we choose a set of rays defined by impact parameters {p,.},

(m= 1, ..., M = 1+ C), where the first C rays intersect the core, with

PC = rl, and the ren~ainder me tangent to the spherical surfaces through
cell centers [i.e., pn = r(~-c)+(,,,)]. The cell centers are defined such that
ri+(l,z) contains half the volume (or mass) between r~ and ri.bl, that is,

The m th ray intersects both cell surfaces, inducing a mesh {s~,m),and the
. .

spherical surfaces through cell centers, lnducmg a second mesh St +(~,2),nt,
where

sl~ = (r?– p~)”2, (83.87a)
and

St..(l,z),n = [rt~(l,zj – p~]””2. (83.87b)

For rays inside the core (pm s pc), {sLm} is defined for 1=1, . . . ,1+1, and
{s[.+(l,z),~} for 1=1, . ...1. For rays outside the core, {sL.,} is defined for
l=m– C+l, . . . ,1+1, and {s1+[1,2),n} for l=rn-C, . ...1. By symmetry,
we need to calculate the solution only to the right of the vertical axis in Figure
83.2, and to the right of the core.

We write a clifference-equation representation of (83.85) in terms of

1i+(l/2),mr! ] similar to (83.31) with K =1. We define=j[siT(l,21,,m, p,,., v,. ,

For rays outside the core (m> C), we can apply (83.85) at 1= m – C, . ...1.
At the axis of symmetry we require that the fictitious quantity

.i[m –C–( 112)I,11w= ~[,n–ci-( l)?.)”l,~nttto obtain an equation containing only

jc,,l_c+{ ,,z,j,,,lm and JL,W–C+(3,z)l,~m. At the outer boundary we manipulate
difference representations of (83.83) and (83.84), using j(R) - h(l?) (no

—
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incident radiation), as in (83.32) to (83.36) to obtain an equation contain-
ing only j,.l.( ~,z),ntnan d j(_cl,z),,.n. For rays that intersect the core, we obtain

an inner boundary condition by imposing a known flux from the core [see
(M2, 252-254) for further details].

Along each ray we have a tridiagonal system of order L, where L ranges
from 1 to 1. Summing over all rays, for all frequencies, we find the total
comptiting effort scales as C’12N (assuming 1>> C]. On vector computers,
the equations for all frequencies on a given ray can be solved in parallel.

An alternative way of doing the formal solution in spherical geometry is
to develop a finite difference representation of (76.9) with r and K as
independent variables. Suppose we start with the transfer equation in

conservation form:

3P

Writing (83.89) for
equations, we have

3@

and

d(rzlU) 1 d
—-+; m[(l-w*)I”] =qu-x.Tv. (83.89)

d(r3)

*P, and taking the sum and difference of these

tJ(r2hU) 1 cl
—+--~[(l -K2)hp]=~p-X,,jv

d(r3)
(83.90)

(83.91)

where j. and h,, are defined as in (83.12) and (83.13), for o= I-L~ 1.
We discretize (83.90) and (83.91) on a radial mesh with hv located at cell

surfaces {ri}, (i = 1, . . . . 1+ 1), and jv at cell centers {ri+c112)},(i= 1, . . . . ~),

and introduce both a frequency mesh {v. } and angular mesh {~~}; a typical
choice for {pm,} is a double-Gauss quadrature of order M. Equations
(83.90) and (83.91) then become

3&~L(Y~+.~ht+l,~~– r~hi~~)/(r~+l– r?)+ [2r,+(l~2)]-’ ~ llrw~(~~n -t ht+l,w~)
m’ (83.92)

= q,+(l{2),lt—Xi+(l/2),n~i–(1 /2),mn> (Mel,..., M),

and

3 K,n[r?_(l,2)jiy(l/2),,mn – r?-cl/2),n,n~i-(1/2j. mnl/[r?-+(~/2) – r?-( u2)1

+ (2rt)– ‘ ~ ~mmOi-(1/2>,.t,n+ ji+(l/2), m’n 1
m’

= — Xinhim,t, (WI =1, . . . >&f), (83.93)

where
Xin={Xi_(l,21[ri – r,-(,,z)]+ Xi+(l,2)[ri-~l,z) – r~]}/[r,+[lj~l- r~-~,j~~].

(83.94)

The matrix D~w)~ is a discrete representation of the angle-derivative
terms in (83.90) and (83.91), evaluated at ~; it may be constructed in
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several different ways. One approach (Cl), (C2), (C6, $91), (Nl) is to
assume that j(p,) and h(~) are represented by (unique) interpolating
polynomials of order (M – 1) determined by the angle mesh {Kn,}. These
polynomials can be written conveniently as

j(w) = S ~i(~)j(w),
icl

and similarly for h(~). Here E.i(~) is the Lagrange polynomial

~(w)= (w–w,). ~.(!–-V,-,)( VW,+-,)-. .h-–h.’f)
L

(P’i ‘WI) . .(A ‘Wi-l)(Wi ‘Vi+]) ~ . (P’i ‘PM)

which is defined such that Li (Ki) = t$ii. Then

(dj/dw)., = ~ (dL.i/dW)J(pi)
L=l

whence

,nm = (1 - ~:)(dIJd~)w,m -2~m a,nmr.D

(83.95)

(83.96;

(83.97)

(83.98)

The derivatives (dI.Jd~) are easily calculated analytical y from (83.96). A
related approach is to represent (1 – ~2)j(p) and (1 – p2)h(V) instead of

j(w) and h(w) by the interpolating polynomials.
The D matrix given by (83.98) is full, and for large M (needed for

accuracy) has large elements of alternating sign. This is a characteristic of
all high-order clifferentiation formulae, reflecting the fact that high-order
polynomials can oscillate wildly over their interval of definition; numericaf
noise or other errors in the solution then tend to be amplified, and the
computation may become unstable.

The difficulty just described can be circumvented by using a discrete-
space method similar to Carlson’s SN method (C4), (L4), (L5). Here, one
assumes that the discrete ordinates j(~~) and h(~.z) represent j and h

.
wlthln an angular cell [W,. _( ~,2),w .,+(1)2)]. The cell boundaries are taken to
be F.,,2 = O, and

I-Lm-)-(uz,= P-..-(m) + L (Mel,..., M), (83.99)

where b~ is the quadrature weight associated with km. The properties of
quadrature formulae assure that W~–(llQ) < ~ < w ~+.(l,z), and that

~M+-(1/2)= 1.
Thus, integrating (83.90) over [V _(,,2), w ~+( ~,2J, and suppressing depth

and frequency subscripts, we obtain

3 b,,%pm
d(r2hn) 1
—+–{[1 —d,..(l/JJ-zt .n+(l/2) –[~– I-L:-(1/2)

d(r3) r IL-(V2)} ~83,1001

=L(q-xj..), (Mel,..., M).

Noticing that by symmetry h,,2 = h(~ = O)= O, we see that (83.1.00) has the
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desirable property of being strictly conservative: when summed over all m,
it yields the zeroth moment equation (83.69) exactly.

We must now represent hl,x(,,,l in terms of the discrete ordinates {h~};
we then discretize the spatial operator as before, and obtain an equation of
the form (83.92). To maximize stability of the solution, one may represent
h(p) by a linear spline (P2), so that

h,n..(,,z) = {[/-Lm+l– l_Lnl+.(1/2)lL+[wlm+(l/2)– f4m14n+l}/(l&ll – %)>

(rn=l,...,l) l). (83.101)

We need not specify h~+(~,zl as its coefficient in (83.100) vanishes because

w M+(I12)= 1. substituting (83.101) into (83.100), and recalling h 112=0, we
find that D is a tridiagonal matrix with elements

bmll,m,r,. -l= –[1 – /-L:_(,,2,][wp,L– w,,t_(,,J(v,,l – K,.,_L), (r?’1=2,..., M),

(83.102a)

bmDn,nL=
[1- w:+(,,2jl[Pln+-1- Pm.-(l/2jl

(f-%+]–%)

[1 - LL2t-(,,2)l[wm-(1,2) - W-II

(1% - An-l) ‘
(m =2,..., M), (83.102b)

bmD mm+, = [J – P:+mJIP)?l-w/2) – PJ(wr,l..l – %)>

(m=l,... >M-I), (83.102c)
and

b,D,j =(1 ‘~:/2)(~2– ~3/2)/(~2–d- (83.102d)

In developing a discrete-space representation of (83.91) we first rewrite
it as

f3(r2j.)+(f42-1) 1 d
3p2— — 1“+;= [K(1 – LL’)/”1 = –X.wh”, (83.103)

i3(r3) r

which when Jntegrated over [.L_(,lz), p n+(, 12,] becomes

[
,.

– WI,,–(U2) 1 – fG–(1/21 /ln–(u2) }= -xbm~.,k (in=l,..., M).

Recalling that V.ljz = O and V.,M+(112,)= 1, we see that (83.104) has the
desirable property that when summed over m it yields the first-moment
equation (83.70) exactly. Discretizing (83.104) we obtain

+ (Zrt)–’ ~ DLm.,[ii–( l/2).mII + ji+(L/2).i’nrJ = ‘Xi,,knhtmn, (Mel,..., M)
m’

Representing j(w) by a linear spline as in {83.101), one finds that D’ is
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tridiagonal with elements

bmD:,,,.–, = –W,n-(, /2)[1 – w:,-(L/2)1[An – wn,-(1/2)1j{wm– /-%- I)>

(m =2,..., M), (83.106a)

b,nD~,,n = (~:,– 1)+
1[~m+-(1/2)[1– ~i+(l/2) ~IIt+J – v ,?%+(1/2)1

(%+1 – l%)
(83.106b)

f4–(1/2)[1 – ~;L–(L/2)1[~P?-( ]/2)–I&?-l]—
(l-h – Pm-J

(J’n=l,..., M),

and

b,mD~,m%+, = [ 1[w,wb(l/2) 1 – P2n+( l/2) fJ+Tt--(l/2)– )A?J(f.h+l — f% ,

(rrL=l.,...,l) l).

lf the discrete-space equations are formulated in terms of the intensity
1*, instead of j and h, the fact that a photon trajectory always has a larger
value of p at the point of absorption than at the point of creation argues
(L6) that the angle derivative should be represented by an upstream
difference, that is, l~_( ,,3 = Iw. This argument does not apply, however, to

j and h, which mix inf omlation at + ~.
Equations (83.92) and (83.93), with suitable boundary conditions, pose a

coupled system of the general form

–Ai ji.l.c1,2)+ Bihi – Ciji_( ~/2)= Di, (i=r+l,... , 1), (83.107)

and

—Ei+(l/2)hii-l + Ft+(uzji+(ua – Gi.,.(,,2)hi = Hi.,( ~,2), (i= I,...,l).

(83.108)

Here ji+(l,z) and hi are vectors of length M containing the angle cow?o-
nents ji,.(1/2):nL,t an d hinln; the matrices A, B, C, and E, F, G are all of

dimension M x M. The boundary conditions imply that AI-~= O and Cl G

O. Because the equations are already angle coupled, scattering terms in the
source function can be written out explicitly as in (83.26) at no extra
computational cost. Equations (83. 107) and (83. 108) are solved by Gaus-
sian elimination, starting with the forward elimination

hi = Ki ji_(l,z) + Li

and

ji–(w = Mi–( uah~ + Ni–( L/2)7

fori=I+ l,. ..,2, where

Ki ~ [Bi –AiMt+(i,z)]-’Cj,

L, ~ [Bi – AiMi+(l/2)]-1 [Di + AiNi+(l/2)],

Mi_(1,2) = [Fi_(l ,21–Ei–(1,2)Ki]– ‘Gi_( ~,21,
and

Ni-(, ,2, ~ [Fi-(,/z) – E,-(l/z)K ]-1 ~i-( 1)2)+ Ei-( ~lz)Li].

(83.109)

(83.110)

(83.1.11)

(83.11.2)

(83.113)

(83.114)
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The forward sweep is completed by applying (83.109) at i =1, where
Cl= O implies h, = L,. We then back-substitute into (83.110) and (83.109)
to determine ji+(l,zl and hi+l for i =1, . ...1. The computational effort for 1
radial shells, M angles, and N frequencies scales as CIM3N.

Both the tangent-ray and discrete-space schemes have advantages and
disadvantages. The tangent-ray method is expensive for large 1 because of
the large number of tangent rays and mesh points per ray. However the
solution along each ray is a true formal solution and is relative] y cheap.
Furthermore, this method provides good angular resolution of the radia-
tion field (particular] y when RirC >>1 and the radiation field becomes
strongly peaked towards K = 1) because it samples all source shells. The
discrete-space scheme uses M fixed angles and is economical when M is
small. But because it is no longer a true formal solution (the equations are
angle coupled) the computational expense rises rapidly with M. For small
M the angular resolution may be inadequate when R/rC >>1 and/or the
radiation field is strongly forward peaked. But the method may be com-
pletely adequate, with small M, for problems in which a geometrical y thin
transport layer (e.g., a stellar atmosphere) surrounds a large diffusion
region (e.g., a stellar interior) within which sphericity effects are important
[because (r/rc) varies over a large range] but the radiation field is nearly
isotropic.

Having found jU at all depths and frequencies by either method, we can
evaluate the fv’s and qv’s needed in the moment equations. We iterate

between the moment equations and the formal solution as in the planar
case. If J iterations are required for convergence, the total computing effort
scales as J(c1N3 + C’12N) or J(c1N3 + c’fM3N) for the tangent-ray and
discrete-space methods respectively.

6.6 Statistical Equilibnom in the Presence of a
Radiation Field

The occupation numbers of atomic levels in a radiating fluid are not, in
general, those predicted by equilibrium statistical mechanics for local
values of the temperature and density (LTE). In some cases the departures
from LTE are severe; generally they are driven by radiative processes that
deviate from equilibrium values in regions where photons escape efficiently
through a boundary. Using a stellar atmosphere as an example, we first
examine the microscopic requirements of LTE, and show that they are
unfulfilled. We then formulate rate equations that determine the state of
the material from local values of the temperature and density and the
radiation field.

84. The Microscopic Implications of LTE

The hypothesis of LTE makes several tacit assumptions; let LISexamine
some of these critically.
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DETAILEDBAT_&NCE

In thermodynamic equilibrium, all processes are in detailed balance, that
is, every transition, of any kind, is exactly canceled by its inverse. Detailed

balance holds for CO1lisionaf processes so long as the particle distribution
function is Maxwellian; collisions then occur at their equilibrium rates (per
particle) at the local kinetic temperature. If these were the only processes

operating, we would have LTE.
However, radiative processes compete with collisions. When they occur

at their equilibrium rates (e.g., the radiation field is Planckian), they also
are in detailed balance, and help drive the material toward LTE. But if the
radiation field has a nonequilibrium distribution the radiative rates can be
out of balance and will tend to drive the material away from LTE. In the
interior (or deep in the atmosphere) of a star the radiation field does, in

fact, thermalize to the Planck function, and LTE obtains. However, at the
surface of a star the radiation field is out of equilibrium in two important
respects. First, there are no incoming photons, hence the field is aniso-
tropic, and is dilute because the mean intensity (which sets absorption rates)
averages over a hemisphere containing no radiation. More important, the

outward-moving photons at the surface originate mainly from layers at unit
optical depth in the atmosphere; these layers in general have physical
properties (e.g., temperature) substantially different from the surf ace
layers. Hence even for Planckian emission from the deeper 1ayers, at the
surface the characteristic radiation temperature T~ can be quite different
from the local kinetic temperature T~. The effect is largest at frequencies
where the materiaf is most transparent and the unit optical-depth surEace

lies deepest. Moreover, when hzi kT >>1, B.,(T) varies as e-h “kq’, hence
13v(T~) may differ from B. (Tk) by ol”cfers of magnitude even for a modest
difference between TR and Tk. Thus the frequency spectrum of the
intensity near the surface will generally be strongly non-Planckian, and
radiative rates will be far from detailed balance.

We note in passing that even when the materizd is not in LTE we can use
detailed-balancing arguments to determine rate coefficients; for example,
we can express collisional de-excitation rates in terms of excitation rates.
We shall use this device repeatedly.

“I-HEPARTICT-EVEI.OCITYOISl_RTBUTIONFLTNCTION
In equilibrium, all particles have Maxwellian velocity distributions at a

single kinetic temperature; this distribution is the unique result of elastic
collisions among particles (cf. 5$8 and 9). However, in general both
radiative and inelastic collisional processes can perturb the equilibrium; for
example, a collisional excitation of an atom by an elec~ron lowers the
electron’s energy by a discrete amount, while a recoin bination prevents
further elastic collisions. Thus establishment of a Maxwellian distribution
hinges on whether the elastic collisions occur much more frequently than
inelastic or radiative processes.
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Characteristic times for these competing processes are the self-collision
time t. for electrons [cf. (1 O.26)], the radiative recombination n time t.,, and
the inelastic collision time ~c. For conditions in stellar atmospheres, conser-
vative estimates show that tJtrr - 10-7 and tJtic s 10-3, so the elastic

collisions always dominate, and the velocity distribution should be Maxwel -
lian (B2), (M2, $5–3). Moreover, demanding steady state in an atmosphere

of hydrogen atoms, protons, electrons, and radiation while allowing energy
exchange among all components, one finds (Bl) that I‘Tioll– Tejccls

10-3 TC.,Cprovided that the electron density n. a 10’0. Thus in what follows
we can safely assume that all particles are, in fact, Maxwellian at a single
temperature.

FXCITA-~rONAND 10NHAWON EQUILIBRTUM
When collisional excitation and ionization rates (and their inverses) domi-

nate the corresponding radiative rates, LTE should prevail; this is the case
in dense laboratory plasmas and stellar interiors, but not in a stellar
atmosphere. One can show (B2) that in the Sun (T —6000 K] the ratio of
radiative to collisional ionization rates ranges from about 2 to about 103
for atoms with ionization potentials &iOn-1 eV and -8 eV respectively.
For an O-star (T-3X J.04 K) these ratios are 0.2 and 20; but atoms with
&ion– 1 eV are no longer important because they are completely ionized.
Hence photoionization rates generally vastly exceed collisional ionization
rates; similarly, radiative recombination outweigh collisional recombina-
tion.

Similarly, radiative excitation rates in the Sun are from 6 to 300 times
larger than collision rates for transitions in the spectral range 3000 ~s A <

9000 ~. For an O-star the radiative rates exceed collisional only for
ffs 5000 ~; but the bulk of the radiation emerges in the far ultraviolet for

such stars, thus for all practical purposes radiative processes far outweigh
collisions.

We thus see that in stellar atmospheres both excitation and ionization
equilibria can be driven away from LTE by radiative processes. We next
must ask “over what depth-range can radiative rates depart markedly from
their equilibrium values?”. Early discussions [e.g., (Ul), (B2)] concluded
that equilibrium radiative rates in any transition are attained at optical
depths greater than unity in that transition. However, this conclusion is
false [see (T2, 141–1 47) or (M2, $5–3)] because of the effects of scattering,
which allow J. to depart from B,,, (hence departures from LTE to occur) to
a depth equal to a photon destruction length (cf. $83). Furthermore, because
level populations are determined by all rates within the transition array,
departure of even one transition from eqLli]ibriunl tends to drive the
population of all levels away from LTE. Only at depths where the
radiation field is therm alized at all frequencies (i.e., ~. a g:”2 for all v) is
the recovery of LTE guaranteed.

In summary, in a stellar atmosphere (whence the photons we observe
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originate !) one must, in general,
machinery to do so is provided by
consider.

85. Non-LTE Rate Equations

GENERALFORM
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allow for departures from LTE. The
non-LTE rate equations, which we now

We derive the rate equations for the general case of a moving medium. Let
ni~ be the number density of particles in level i of chemical species k in a
fixed volume. The rate of change of ni~ is determined by the net rate of
flow of particles into the volume and the net rate of transitions into level i
from all other levels j by atomic processes. Thus

(dll.Jdt) = ‘V “ (n~V) + ~ lt;~~- n,, ~ @; (85.1)
i#i j+i

here l?; is the total (radiative plus collision al) transition rate from level i to
level j. If we sum (85.1) over all states of species k, all atomic rates cancel
term by term, and, writing N~ = xi ni~, we obtain a continuity equation for
species k:

(dNJdt) = –v “(Nkv). (85.2)

Multiplying (85 .2) by rn~, the mass of species k, summing over species, and
noting that p = ~~ m~.N~, we recover the continuity equation

(dp/dt) = –v “(pV). (85.3)

Using (85 .3) to eliminate V ov we can rewrite (85.1) in the Lagrangean
form

(DnJDt) – (n,Jp)(Dp/Dt) = ~ ni.P~– n,, ~ P;, (85.4)
i#i ;#i

or, more instructively, as

p[D(nJp)Dt] = ~ nikP~- n,, ~ P:.
j#i j#i

(85.5)

Equation (85 .5) states that in a material element, the rate of change of the
number of particles, per unit mass, in a particular level ecluals the net
number, per unit mass, entering that level via atomic transitions. The
Lagrangean form of (85.2) is

D(NJf3)/Dt = o, (85.6)

which states that the total number of particles of a chemical species, per
unit mass, in a material element is constant.

For steady flow (85.1) simplifies to

(85.7)
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and for a static medium it becomes

~ njkP;-nik ~ q= o. (85.8)
j+i i+i

In what follows we concentrate mainly on formulating and solving (85.8),
which illustrates all the essential physics; we generalize to time-dependent
flows at the end of the section. Jn all cases, all rates are to be evaluated in
the comoving fluid frame.

COJ-LISJONJ?Al”ES
In an ionized plasma, atomic collisions with charged particles dominate all
others because of the long range of Coulomb interactions. Furthermore,
because the collision rate is proportional to the flux (hence velocity) of the
incident particles, we usually need consider only electrons, whose velocities
are a factor of (ArnJrn. )1’2= 43A”2 greater than those of ions of atomic
weight A.

Let crij(v) be the cross section for transitions (i -+ j) produced by
collisions with electrons moving at speed JJ. The number of collisional
excitations (i + j) is

niCij = nine
J“

crii(v)f (v)v dv, (85.9)
+JO

where f(v) is the Maxwellian velocity distribution and VO is the speed
corresponding to the threshold energy Eij of the transition (i. e., ~m.v~ =
Eii). In equilibrium we have rz~Cii = n; Cii., which allows us to compute the
collisional deexcitation rate (j -+ i) as

niCii = ni (ni/ni)*~j = ni (gieh”~’’T/gj)~j. (85.10)

Similarly, the collisional ionization rate from level i is

niCiK = nin.
1“

cri. (v)f(v)v dv, (85.1.1)
Uo

and the collisional recombination rate is

n.C.i = n. (nL/n K)*Ct. = n~ C,. (85.12)

where n? is computed using actual electron and ion densities, that is,
(ni/nK)* = n.@iK(T).

RADTATJVERATES
The number of upward radiative bound-bound tr;~nsitions (i -+ j) is

The last form will prove useful later. We emphasize that (85.13) applies



RADIATION AND RADIAHVE TRANSFER 391

when all quantities are measured in the comoving frame. In the laboratory
frame ~ is the much more complicated expression

The total number (spontaneous plus induced) of downward radiative
transitions (j ~ i) is

~jR~i = nj (Aii + Bji~i) = nj (4~~ij/h~,i)(g,/ gj)[(2hv~/cz) + ~i]. (85 .15)

A prime has been added to Rji to reserve the unadorned symbol for a
different use below. We cast (85.15) into a more useful form by factoring
out the quantity (rLJnj)* = (g:/gj)eh”l~T from the right-hand side to obtain

(85.16)

In (85.16) we can take v-dependent factors inside the integal because the
line profile ~W varies swiftly. Despite its apparently cumbersome form, this
expression will allow us to systematize notation effectively.

“Now consider bound-free transitions. The photoionization rate is

J

.
niRi. = n~4w [a,. (v) Jv/hv] clv. (85.17)

.“

To calculate the spontaneous recombination rate we invoke a detailed
balancing argument. In TE the number of spontaneous recombination
equals the number of photoionizations corrected for stimulated emissions,
that is,

(nKR~L)~mn = n~4m
J

- [ai.(v)/hv]Bu(l – e-h’’”-? dv. (85.18)
~o

The corresponding nonequilibrium rate is obtained by calculating n? using
the actual ion density n.; thus

(nKR~i),PO,,
J

= nK(ni/nK)*4m = [aiK(v)/hv]BV(l – e-hulk’> dv
v“

J

(85.19)

= nK(nJnK)*4m w [aiK(v)/hv](2hv3/c2) e-h”’k-r dv.
.()

The equilibrium number of stimulated emissions is the term containing
e–h’’’krr in (85.18); to obtain tbe nonequilibriurn number we replace B. by
Ju, and calculate n? using the actual ion density. Thus

J
(n.RLi).ti., = w (w/n~)*4m m[~iK(u)/hv]J.e-hrJ’kT A. (85.20)

..
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Combining (85. 19) and (85 .20) we get the total recombination rate

(85.21)

Comparing (85.13) with (85.17), and (85.16) with (85.21), shows that the
notation is systematized by writing all upward radiative rates (i ~ j),

whether j is bound or free, as niRii where

Rii = 4~
J

m[aij(v)J”/hu] dv, (85.22)
.O

and all downward radiative rates (j ~ i) as ni (ni/ni)*Rii, where

Ri, G4W
J

- [aii(u)/hv][(2hv3/c2) + Ju]e-pL”’kl”civ. (85.23)
,J~

Notice that in equilibrium R: - R;.

SOLUTIONOF TIW RATE EQUATIONS

We now assemble individual rates into equations from which occupation
numbers can be colmputed. For the present we take as given the tempera-
ture T, the total particle density N, and the mean intensity Ju at all
frequencies. One can regard the temperature and gas pressure (p= NkT)
as coming from a solution of the Imomentum and energy equations, and Jw
from a solution of the transfer equation. For simplicity we consider a gas of
pure hydrogen.

For each bound level we have a rate equation of the form

[
~ ni(Rji + cii)-~i ~ (ni/ni)*(Rii + C;)+ $ (l?Li+ Cii)
j<i i<i ,>i 1

K

=] (85.24)+ ~ ni(~i/~i)*(Rji + Cii) =0, (i=l ,. ..,,
;>i

where L is the number of bound levels. We can also write a total ionization
equation

where np is the proton density. However (85.25) contains no new informa-
tion because it is merely the sum of (85.24) over all bound levels.

We thus have L equations in L +2 variables: n,, . . . . n~, nv, n.. To close

the system we invoke charge conservation,

n,, = n., (85.26)

and number conservation,

f n,+np+ne=N. (85.27)
iel
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Clearly (85 .26) is trivial and could be used to eliminate n. or n,,; we retain
it because in a gas mixture several species may contribute electrons.

The system composed of (85.24) and (85.26) can be written

An= B, (85.28)

where n is the column vector

n=(nl, . . ..nL. ~), (85.29)

A is a matrix of dimension (L+ 1) x (L + 1) containing the transition rates,
and B is the column vector

B=(O, O,. ... O,nJ. (85.30)

If T, n., and Ju are given, all elements of A and B are known, and we can
solve the linear system (85 .28) for n by standard numerical methods. But if
we are given N, not n., the unknown n. must also be determined from the
complete system comprising (85 .28) and (85.27); this system is nonlinear
because n. appears in collision and recombination rates in elements of A,
which in turn multiply the level populations nl, . ., nP. The nonlinear

system is solved by an iterative linearization scheme.
Suppose we have an estimate n: of the electron density (say from

assuming LTE), which we use to calculate estimates AO and BO of A and B,
and we solve AOnO= BO for an approximate set of occupation numbers no.
Jn general, n: and nOwill fail to satisfy (85.27), and we must improve these
initial estimates. To do so, we set n = no+ 8n and n. = n:+ tin., and expand
(85.28) to first order, obtaining

AO(nOt i3n) + no “ (dA/dn.)O 8n. = BO+ (ttB/&z.)O t%.. (85.31)

Here

[n” “ (dA/dn.)O]i = ~ (dA,j/dnc)On~, (85.32)
I

and
(dB/dne) = (O, . ...0, 1). (85.33)

The derivatives (dAii/@) can be computed analytically. Using the fact that
AOnO= BO, we rewrite (85.31) as

AO 8n+ [n” - (dA/dn,)O– (dB/dnc)O] &a. = O. (85.34)

Further, from (85.27) we have

( )~ i3ni+ti~+Sn. =N- ~ n~+n~+nj . (85.35)
,D~ LCI

Equations (85.34) and (85 .35) provide a linear system yielding Sn and
Sri,. Solving them, we revise all populations and recompute A and B using
the new value of n., and iterate until \8ni/ni \ is less than some small number
for all ni and n.. Convergence is quadratic, giving precise results in a few
iterations if the original estimate of n: is reasonable. In some formulations
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one uses departure coefficients

bicni/n; (85.36)

instead of occupation numbers per se.
As we will see in $6.7 and Chapters 7 and 8, the linearization procedure

just described is a restrictive example of the general procedure used to
sol ve the coupled equations of hydrodynamics, radiative transfer, and
statistical equilibrium. In general we do not know T, N, and J,,, but have
only preliminary estimates; we then linearize (85.28) as

8n = (dn/&te) the+ (dn/dT) i3T+ ~ (dn/&7k) i3Jk (85.37)
k

where the deri vat ives all have the form

(dn/dx) = A- ‘[(dB/dx) -n . (dA/dx)]. (85.38)

Anal ytical expressions can be written for (dA/dn.), (dA/dT), and (dA/&fk);
see (A7), (M2), and (M3). In (85.38) all terms on the right-hand side are
evaluated using current estimates of A, B, and n, the latter obtained from
An= B. Equations (85.37) and (85.35) are then solved simultaneously with
the linearized transfer and dynamical equations (see $88).

Finally, we outline the method for solving rate equations in a dynamical
atmosphere. Assuming that al i quantities are known at t“, we wish to solve
for new level populations at time t“+’= tn+ At”’( “2). In (85.24) we replace
the zero right-hand side with the time derivative on the left-hand side of

(85.5), represented by a finite difference, obtaining

[(nm~’/pF’+l)-(nl’/pn)At”t(l(~’~ = ~an+-’(n’+-l/pn+-’) +(1 - ~)a’l(n”/pn).

(85.39)

where the superscripts indicate the time level at which quantities are
evaluated. The parameter O determines the centering of the time deriva-
tive. Intuitively one expects d = ~ to be optimal because it weighs informa-
tion at t“ and t’+L equally in the integration over At’’+ (’’z). However, for
most astrophysical problems the microscopic-process ecluilibrium times are

orders of magnitude shorter than a dynamical timestep, hence level popu-
lations evolve through a sequence of quasistatic equilibria. Equations
(85.39) are therefore very stiff, and for numerical stability one must choose
(3= 1, that is, a backward Euler or fully implicit scheme. Equations (85.39)
can then be rewritten as

-.+lnn+l = ~.+1a (85.40)

where b~+-’= (–pn+-’/pm)nAt”+ t+12),), (i= I, . . . . L), and am+L is the rate

matrix with the term –l./At” “-(1’2] added to the diagonal elements. Equa-

tions (85.26) and (85.27) remain unaltered, and are also evaluated at t“‘-’.

The system (85 .40) plus (85 .26) is again of the general form An= B, and
the linearization scheme proceeds exactly as before, yielding equations of
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the general form (85.37). These are solved simultaneously with (85 .35) and
the linearized transfer and hydrodynamic equations (see $$88 and 104).

86. Thermal Properties of a Nonequilibrium Gas

In LTE, all occupation numbers and thermodynamic properties of the
material are determined by two local state variables, say N and T (cf. $14).
But for non-LTE, the rate equations imply that ni = ~ (N, T, .IW),where .TV
denotes the complete frequency spectrum of the mean intensity. Thus we
cannot determine the particle distribution function until we know the
photon distribution function; that is, we have as many new “state vari-
ables” as are required to specify the frequency distribution of the radiation
field. Moreover, the radiation field is fundamentally nonlocal.

Thus when there are departures from LTE we cannot hope to express
thermodynamic properties of the material as a function of local state
variables. At best we can write some properties in terms of particle
densities. For example, we can express the internal energy of the material
(assumed to be pure hydrogen) as

where E, is the ionization energy of hydrogen, and &i= (1 – i–z) =l. Similarly
the specific enthalpy is

12

ph = ~ ~si + npizr+@kT. (86.2)
i=l

We used this approach in $75 to write formulae for the opacity and
emissivity.

For other quantities, such as entropy, we can go back to basic definitions

such as (11.1) and (11.2), but their usefulness is problematical. In yet other
cases it is not clear how a quantity can be defined; for example, we cannot
write formulae for c“ and CPbecause the gas responds differently when the
energy input is radiative than when it is thermal energy of microscopic

motions. Some quantities are simply meaningless; for example, the adiaba-
tic exponents no longer make sense because, in the presence of a non-

equilibriulm radiation field, the material is inherently nonadiabatic owing to
radiative energy exchange from one point in the medium to another.

It is sometimes useful to have rough models for the nonequilibrium
thermodynamic properties of material, for example, in analyses of linear
wave propagation or local stability. For example, one might assume an

imposed radiation field and tied radiative rates, and then perturb the rate
equations with respect to, say, 8T and 8P, and use the I%L’sto evaluate such
quantities as ~Xu and &I,, (useful in the linearized transfer equation), or Zie
(for studies of energy balance). A cruder model would be to assume all the
b factors for bound levels to be fixed, and then calculate 8rLi as b, &y for
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perturbations 8T and ~p. But we stress that these approaches are not
rigorous, and the only comp Ietel y satisfactory treatment is to enforce a
self-consistent nonlocal coupling among the fluid equations, rate equations,
and transfer equations from the outset.

6.7 Solution of the Coupled Transfer and Statistical Equilibrium
Equations in Static Media

We are now in a position to combine the transfer and statistical equilibrium
equations with the goal of obtaining consistency between the radiation field
and material properties, subject to constraints of momentum and energy
balance, which is central to several classes of astrophysical problems: (I) In
the static non-LTE model atmospheres problem we attempt to deterlm ine
simultaneously the radiation field (from the transfer equation), the state of
the material (from the statistical equilibrium equations), and the structure
of the medium (from constraints of hydrostatic and radiative equilibrium).
We focus closely on this problem in this chapter because it provides a good
framework for the development of the basic formalism. A simpler problem
is to assume LTE, replacing the statistical equilibrium equations with the

Saha-Boltzmann relation. (2) In the statistical equilibrium problem we solve
the combined transfer and statistical equilibrium equations assuming that
the atmospheric structure is known. Here one includes many levels and

transitions so as to simulate an observed spectrum. We will not discuss this
class of problem; see (M2, Chaps. 10–12). (3) In the dynamical model
awnospheres problem we solve the transfer equation, time-dependent statis-
tical equilibrium equations, and the hydrodynamical equations. Again the
problem can be simplified by assuming LTE. Such problems are considered
in Chapters 7 and 8. (4) Finally, one may do a statistical equilibrium
problem in a time-varying atmosphere, for example, to calculate the

spectrum of a variable star. Such problems are outside the scope of this
book.

87. The Two-Level Atom

The two characteristic features of non-LTE transfer problems are that (1)
the source function (for both lines and continua) contains a dominant
scattering term and (2) the radiation field in one transition affects the
radiatioJl field in other transitions. To gain physical insight we consider a

highly simplified atomic model, the two - level atom, consisting of two bound
levels and a continuum, for which we can obtain an analytical expression
for the source function that displays the scattering term explicitly, and
shows the nature of the other source-sink terms. We can then see how
atomic processes affect the therm alization of the radiation field in the 1ine
joining the two levels, and armed with this insight we can appreciate the
implications of the computational strategy developed in $88. To supple-
ment our brief discussion see (M2, Chap. 11).

—_—



RAD [ATION AND RADIATIVE TRANSFER 397

THE LTNESOURCEFUNCT[ON

Consider the spectrum line formed between the lower and upper levels, 1
and u, of an atom. Assume that the line is so strong (e.g., a resonance line)
that we need consider only the opacity and emissivity of the line itself.
From (73.10), the average line opacity is

Let d~ = –X~Uclz; the transfer equation is then

where the source function is [cf. (73.13)]

s,= (2hv;Jc*)[(gJ’tJgLnJ – l]-’. (87.3)

The occupation numbers of levels 1 and u are determined by the two
rate equations

rtL(BLuj,L+ Ciu + 17LK+ CLK) = n. (A,,t t BU,~U+ C.,)+ nf(RK1 + C~K)

(87.4)
and

n. (Aul + BuL~LU+ Cu~+ l?.. + C.<) = ni (B[U~U+ Cl.) + n:(ll.. + CU.),
(87.5)

where ~,. = j @U.Tudv. From (87.4) and (87.5) we derive an explicit analyti-
cal expression for S~ by solving for the ratio (nl/ n.), substituting into (87.3),
and using the Einstein relations (73. 8) and (73.9); after some algebra one
obtains

SL=[jU+SB.(T.) +O]/(l+S+T), (87.6)
where

&=cuL(l–e ‘hu(Jk’l)/Aul, (87.7)

(R.. + CUK)n~(RK, + Ct.) - g,(f?,. + C,.)n~(R.. + C..}/g.~=
AUi[n~(RK, + C,.) + n;(RKU + C.K)]

>

(87.8)

and

“(%(--) (R,K + C,K)n;(RKU + C..)
(87.9)

guAul [n~(% + G.) + H:(R.. + Cu.)] “

Equation (87 .6), first derived by R. N. Thomas (Tl), has played an
important role in line-formation theory.

Each term in (87.6) has a simple physical interpretation. Consider first
the denominator, which contai m sink terms, all normalized to the spon-
taneous emission rate. The first term corresponds to scattered photons. The
second is the rate of collisional de-excitation of the upper level, hence
accounts for collisional destruction and thermal ization of line photons. The
third is proportional to the total ionization rate from the upper level times
the fraction of recornbinations into the lower level, hence accounts for
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destruction of line photons by processes that transfer electrons from the
upper to the lower state via the continuum.

The numerator contains source terms. The first is a noncoherent scatter-
ing reservoir of line photons resulting from the cumulative contributions of
sources and sinks over an interaction voluJne. The second is the thermal
source, representing photons created by collisional excitation of an electron
to the upper level, followed by radiative decay; this term depends explicitly
on the local electron kinetic temperature T.. The third term is proportional
to the total ionization rate f~om the ground level times the fraction of
recombi nations into the upper level, hence accounts for line photons
created by continuum processes that transfer electrons from the lower to
upper level, whence they radiatively decay. The quantity 6 can be rewritten
as (3= r@*, where

We can then express B* as BU(T~) where T~ is a characteristic radiation
temperature that can exceed, or be less than, T. depending on the relative
sizes of photoion ization and recombination rates.

At great depth in an atmosphere, large densities imply high collision
rates, & becomes large, and S~ thermalizes. If the continua are also opaque
so that .TU+ B,,, then R~K-+ R~< = R~L, while RUK= R~K = R~U, and B* *
B,, (Tc). Hence at depth Sl - Bu (T.). The behavior of S, near the boundary
depends on the relative sizes of the source-sink terms; in general both E
and q will be much smaller than unity. If &> q and E13> qfl*, the line is
collision dominated; S~ then tends to couple to the local electron tempera-
ture T.. If q > & and @*> sB, the line is photoionization dominated; here
S1 tends to couple to the radiation temperature T~. Mixed domination lines
have &> -q but -qB * > &B or vice versa. These three cases can behave quite
differently in a stellar chromosphere, see (M2, Chap. 11).

‘rH15LfNETRANSFEREQUATION

Given a model atmosphere, one can compute the depth variation of s, q,
BU(T. ), and B*. Substituting (87.6) into (87.2) we have a noncoherent
scattering problem with known coefficients, which can readily be solved by
the numerical techniques described in $83. While such a solution certainly
yields the answer, it reveals little about the underlying physics. To gain
further insight let us therefore consider a simpler problem, and suppose
that q = O= O, and that both s and B are constant. The transfer equation is
then

K(~~./~’r) = O,,[lU – (1 – 2)7– H?], (87.11)

where .6= E/(1+ E). Equation (87.11) bears a strong resemblance to the
archetype scattering problem (83. 1) to (83.6) except that now the scatter-
ing is noncoherent. We thus expect that the radiation field in a line will
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behave as described in $83, that is, that ~ will depart markedly from B at
the surf ace, and that this departure will extend over a themlalization depth
Y>> 1 in line optical-depth units.

Detailed analysis [see e.g., (M2, $11–2)] shows that these expectations are
met. In particular one finds that

.$ (o)= &‘ ‘2B, (87.12)

in close analogy with (83.8). The thermalization depth differs from our
earlier result because the non coherence of the scattering process implies
that photons that would have been trapped in the line core at depths where
the core is opaque can instead get redistributed into the transparent line
wings, whence they escape. We can estimate the effects of this escape
mechanism on S, by the following argument.

THE THERNlALT7XrlON DETTH

Suppose the line has a Doppler profile. Measure frequencies within the line
in Doppler units, that is, x = (u —vO)/Av~ where VO is the line-center
frequency, and the Doppler width is Av~ = (vO/c)(2kT/rn)”2. Then the
profile function is

~(x) = m-’j’e-x’. (87. 13)

The escape probability for a photon of frequency x traveling along a ray
with angle-cosine v from a point at line optical depth ~ is exp (’–-r~V)V).
Weighting escapes by OX, the probability of emission at x, we find the total
photon escape probabili~

Define xl such that m$(x,) = 1. Then for ~>> 1, Ez(@X) is approximate] y
zero when lx I= xl because then @X >>1, and is approximately unity when
1x1=x, because r+x <<1. We can thus approximate P. as

Pe (r)=
J“

+X dx, (87.15)
‘,

which shows that P. is determined by photon escapes in the line wing.
When ~>> 1, xl>> 1. In this limit (87.15) yields

P.(T) = +erfc (xl) = e-x~/(2w]’2x,) (87.16)

for a Doppler profile, for which, from (87.13)

X1= [In (T/W’’2)l”2, (87.17)

so that
P.(T) = k/[~(ln 7) ’’2], (87.18)

where k is a constant of order unity.

.,—.
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The escape probability is to be compared with P~, the photon destruction

probability per scattering. Ignoring continuum terms, P~ = (CU1/AU1)= s for
a two-level atom. If P4<~P~, the photon will surely be thermalized before it
escapes and therefore S~-+ B; if P. >>P~ photons escape freely, hence S~
can depart from B, perhaps drastically. It is thus reasonable to estimate the
therrnalization length L!?as the depth at which P. (1%)= Pd. For a Doppler
profile this gives

2- kjc (87.19)

where k is a factor of order unity. We again find that the range over which

St can differ markedly from B can be enormous when .s is small, as it
usually is near a boundary surface. For coherent scattering we found earlier
that Y- &-~’2; the larger value predicted by (87.1.9) results from the effects
of noncoherence. For other line profiles Y can be even larger; for example,
for a Lorentz profile ~ - E-z.

OVERLAPPINGCONTINUUM
We assumed above that all opacity and emissivity comes from the line
itself. When there is an overlapping continuum, which we assume is in
LTE, the source function is given by (77.11), and the transfer equation
becomes

/-L(aIv/13T)= @u[I”– (1– <.)J– ‘gJ3”]. (87.20)

Detailed analysis shows [see e.g., (M2, 350–354)] that the behavior of St is
then determined by the average thermal coupling parameter

J
& m@X&Xdx=8+e(l–8), (87.21)

—cc

where

Physically, 8 is the continuum destruction probability: it is the profile-
weighted average of the probability r/(@+ r) that a Iine photon will be
absorbed by the continuum, times the (unit) probability that the absorbed
photon is thermalized. The continuum processes set a floor on ~ often
much larger than s itself, and guarantee that S~ will be themlalized when
the continuum optical depth is unity or larger, even if the line thermaliza-
tion processes represented by & would not by themselves force S~~ /3.

‘l-RANSFERIN A RESONANCECON-rrNUUM
The preceding analysis can be adapted to continua, say the Lyman con-
tinuum of hydrogen. We adopt the simplest possible atomic model: one
bound state plus a continuum. We assume that the continuum is so opaque
that we can ignore all other sources of opacity and emissivity. Then from
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(75.1) and (75.2)

* ‘h’)’k’~ct,) = (b, - e-’’k’)n~a,,,,,XU=(n~–nle (87.23)
while

q.= n;~u~.(l - e-hu’k’l. (87.24)

For the Lyman continuum hv/kT >>1 (otherwise the hydrogen is mostly
ionized and the assumptions just stated fail), hence we can neglect e–h’’’r’r.
We then have

S. = qU/Xu = Bu/b, , (87.25)

and the transfer equation to be solved is

~ (d I”/&) = (&,[r. – @“/bJ]; (87.26)

here we have written au= aoqb,, and dr = –XO dz = –n ~aOdz where aO is
the cross section at the continuum head.

From the rate equation for a one-level atom, we find that b, is given by

[ rb,= 4T (aU/hv)BV dv+ C,K
1/[ J“ 1

4m (aV/hv)J,, dv + C,K ,
.(1 .,)

(87.27)

where we ignored stimulated emission. Because (hv/kT) >>1, the factor
exp (– hv/kT) in B,, decays away rapidly from its value at u = UO.Thus the
two integrands in (87.27) peak sharply at v = VO,and to a good approxima-
tion we can replace the integrals by 4mwo(ao/hvo)~o and 4mwo(a0/hvO) BO,
where W. is an appropriate quadrature weight. We then consider the
transf~r problem only at the continuum head. “If we write E =
C, ./[(47TWoao Bo/hvo) + Cl. ], the source f unction at UC,is

so= (1 – S).T”+ d%. (87.28)

and the transfer equation at VO,in the Eddington approximation, becomes

~(d2Jo/d~:) = e(Jo– Be). (87.29)

Equation (87 .29) is identical to the archetype problem (83.6), hence we
know that the thermalization depth will be -E” ‘2, while at the boundary
So- E“21?0, which implies b, - S-”z. In a stellar atmosphere .s <<1, hence
in the Lylman continuum there are large departures from LTE, which
persist to great optical depth. Thus both Ii nes and continua are subject to
major non-LTE effects.

THE MUL-riLEVELPRO13L13vl

The atomic models discussed above are drastically oversimplified; to
achieve realism we must consider multilevel atoms. In the multilevel case
we might try to follow the approach used above, manipulating the rate
equation to obtain an analytical expression of the form

S,; = (Ti +cl,i)/(l +pij) (87.30)
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for the source function in each transition i --+ j. This approach is called the
equivalent two - level atom (ETLA) method because (87.30) is of the same
general foml as (87.6). There are many different formulations of this
method, which use difterent groupings of terms within ~ii and flij, and
diflerent methods of solving the equations [see, e.g., (A3, Chap. 3), (31,
Chaps. 6 and 8), (M2, $1 2–l), and (T2, Chap. 3)]. Given source functions
of the form (87.30), it is straightforward to solve the transfer equation in
each transition.

Superficially this procedure looks much simpler than it is. The funda-
mental problem is that the coefficients a~j and 13ii contain terms that
depend on the radiation fields in all transitions other than (i -+ j) [e.g., for
a two-level atom (87.6) explicitly displays the dependence of S~ on the
radiative rates in the continua (1 -+ K) and (u -+ ~)]. Thus we cannot in fact
specify the source-sink terms for any Sij until we know the radiation field in
every other transition. But we can’t compute these radiation fields until we
know the relevant source functions. We must therefore use some kind of
iteration scheme [see e.g., (A3, Chaps. 4 and 7), (T2, Chaps. 5 and 6)]. In
some cases the iteration will converge; in others it fails, forcing one to seek
clever schemes (often based on trial and error) to accelerate convergence.

In the face of the difficulties just described, Jefferies (Jl, Chap. 8)
stressed the conceptual importance of viewing radiation in the entire
transition array of an atom as belonging to a collective photon pool, thus
recognizing that photons do not belong uniquely to any one transition, but
interlock all transitions in a manner prescribed by the equations of statisti-
cal equilibrium. From this standpoint one sees that it is essential to treat all
transitions simultaneously; let us now address this problem in the context

of constructing a static non-LTE model atmosphere.

88. The Complete Linearization Method

In the non-LTE model atmospheres problem we wish to determine, at each
point in the medium, the frecluency distribution of the radiation field, the
distribution of atoms and ions over their bound states, and the temperature
and density. The imposed constraints are momentum balance, energy
balance, steady-state statistical equilibrium, and charge and number con-
servation. Our discussion wil 1 be brief; further details are given in (M2,

Chaps. 7 and 12).

BASrCEQUATIONS

The pressure distribution is determined by the equation of hydrostatic
equilibrium Vp = f, where f is the total force per unit volume acting on the
material; cf. (23.25). For a one-dimensional planar medium

(dp/dm) = g - (fR/P), (88.1)
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where dnt = –p dz and, from (78.12),

J
(f~ip) = (4TIc) ‘co.H. dv, (88.2)

o

where q, = xu/p. Using (78.17) we can rewrite (88.1) and (88.2) as

(dp/dm) + (dP/drn) = g, (88.3)
where

J“ ~“
P = P,, d’u = (47r/c) f“J” cfv. (88.4)

o 0

The temperature distribution is determined by the requirement of radia-
tive equilibrium:

1“
4n (q. –xLJ.) dv =0. (88.5)

o

Assuming thermal emission and coherent electron scattering, XV= K,, + JIeCTe

and qu = q ~+ n.cr,.~u, hence (88.5) becomes

where q ~ and Kv are given by (75.1) and (75.2).

The state of the material is determined by the equations of statistical
equilibrium, charge conservation, and number conservation, as in (85.25)
to (85.27).

The only radiation quantity appearing in these equations is J“, hence we
use the transfer equation in angle-integrated form:

(88.7)

DISCRETIZATION

Equations (88.3), (88.6), (88.7), and (85.25) to (85.27) completely specify
the problem. We discretize them for a set of frequencies {v~}, and mass
shells with boundaries at {nt~} as in $83. The discretized form of (88.3) is

K
+ (47r/c) ~ w~ ~~+( ~,z),kJd.,.(l,z),~‘fd-(1/2).lcJd-( 1/2),k]

k=]

= g Amd, (d=2> . . . . D), (88.8)

] and w. is a frequency-quadraturewhere Amd ~~[Amd–LL/2j + AITI,l+(l/2) ,

weight. To obtain a starting value at d = 1 we use (88.1), assuming that the
material is transparent (so that H., hence fR, is fixed from the boundary
outward). We have

[

K

1
NB12kTy/2 = ml g – (47T/C) ~ w@3/@k~”k-fj/zk , (88.9)

k=l

where the geometric factors kk and }~ are defined by (83.44) and (83.45).
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The discrete representation of (88.6) is

:, Wk[Ti+(I/Z,,k-Kd+(I,Z,,k~d--(I/Z,,k]= 0> (d=l,..., D),

(88.10)

and the transfer equation and its boundary conditions are given by (83.58)
to (83.61). The material equations can be used exactly as written in $85.

METHODOF SOI.UI-ION
In solving the system posed above we must bear in mind several important

points. First, no variable is more fundamental than any other because all
interact; thus within the slab Am~+(l,Q) the solution vector to be found is

4JcMm) = [Jci+(,,z),,>. . . . JH,w, ~> ‘L me,~~, . . . . d> (88.11)

where L is the total number of levels including ions. Some of the

hfOITLIMiOn in xd+( l/2j k, StriCtlY speaking, redundant; in particular the J’s
determine the n’s via the rate equations. But because we wish to know all
these quantities we retain them in the formulation.

Second, all variables are strongly coupled globally via radiative transfer.
A change in any variable at any point in the medium implies changes in all
variables at all other points. The method of solution must account for this

global coupling.
Third, the system is nonlinear, and must be so(ved by iteration.
Assume that the desired solution +d+( ~lZ) can be written ~d+(llz) =

02+0/21 + 8*d+(l/2j where 4J~+(1/2) is the current (wwroximatel solution The
sJr5tem to & Sollted at each depth point is of the form f~+( ~,z)(~) = O, so we

demand that 8* be such that f~..(l ,z)(IJJO+ 80) = O. We linearize this system
and demand that

‘d+(l/2)(+()) + Z [afd7(l/2)la0jl 80i = 0> (d=l, . . . ,D), (88.12)

where j runs over all variables. These equations determine the 8~s; let us
examine them in more detail.

The linearized equation of hydrostatic equilibrium is

k[Td+.(l/z)~Nd+(l/2) + Nd+(u2) 8Td+(l /2)

– ‘d-(1/2) 8N&l/2) – ‘d-(1/2) ~Td-( 1/2)1

K
+ (4dc) ~ wk[fd-K(l/2),k ~~dr(l/2),k– fd-(1/2).k 83d-(U2),kl

k=l

(88.13)

= g ~~d – N~+(l/z)kT,t,.( l/z, + N~-(m)~Td-[1/z)

– (4dc) $ wk[fd+(l/2),k~d+ (l/2), k–fd-(1/2),kJd-( 1/2),k], .
k=l
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with a similar equation for the linearized boundary condition (88.9). The
linearized radiative equilibrium equation is

f Wc[..+ (llz),k aJdJ-(1/2),k~ ‘di-(1/2),k 8Kd–(1/2),k — 6mhl/2),k 1
k=l (88.14)

= ~ wk[qi+-(l,2),k- Kd--(l,2),kyd+,li2),k]
k=l

where from (75. 1) we express 8K as

L

8. = (dK/dT) &f+(tIK/dne) &Lc+ ~ (ZJK/?IIL)1%1, (88.15)
[=1

and similarly for 8q’.
The linearized transfer equations are

.fd-(1/2),k aJd-(1/2j,k +fd-1(3/2),k aJcL+-(3/2),k

ATdk A~di-( U2j,k Ard+(l/2),k ATdi-L,k

+ ~d+(,,2),k &0&( I,2),k+ bd,.(,,2),k ~@d+.(1/2),k+ ~d-}(L/2).k ~“d+(3/2),k

8x~+(~,2),k
– [~i+(l/2),k+ ‘e,d--(l/2)”eJcL+ (l/2).k] X:+(l,a k

(88.16)

+ (%)j.,.(,,z),k+~e~~+(~/2),k
~ne,d+(l/2,

xcW(l/2),k xd+(l/2),k

[ne,cL*(l/2)oeJd+ (U2).k+q~+(l/2),k]
= ~d+(l/2),k + ‘dW2),k-

xd+(l/2),k

where

~d+(l/2)>k - [fd+(L/2),kJcL+-( V2), k ‘fd-(U2),kJd-(1 /2),k]/[ATdi-(1 /2),k A’rdk]>

(88.17)

~d+-(1/2),k- ~d+(l/2).k-~d+( l/2),k– fd+(3/2).kJd-’-(3,2),k[A7d7W2),k,k A~d,-~,k]>

(88.18)

@d-,-( l,2),k - ad+(U2),k~ yd-1-(J/2),k, (88.19)

~d~(~/z),k={~d+-( l/2),k+*6d+(L/2).k[ATdklATd +(l/2),k]}

/[@d_ (,,2),k + @&(l/2,,k], (88.20)

Cd.}(1,2),k ={vd+(1/2),k +i6d.!. (l/2), k[A~d-i, k/ATd+(l/2), k1}

/[@d+ (l/2),k+ ‘d+(3/2).k]> (88.21 )

and

(88.22)bd+(l/2Lk = ad+(l/2),k+ cd-1-(1/2).k

.-. ..
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The density is

p =(~-n.)m~ ~ aiAi =( N-n.)ti (88.23)

where ai is the fractional abundance, by number, of element i, having
atomic weight Ai; hence 8p, which appears in i%+ can be written i3p =
ril(MV-8?Le).

Equations (88. 13) to (88.23) plus the linearized statistical equilibrium,
number conservation, and charge conservation equations (85 .37) and
(85.35) can be assembled into a system of the form

–AcL.,.(1/2) 61!L-( 1/2) +Bcii-(wj ~Ih+(u2) – cd.,. (1/2) ~&+(3/2j = Ld+(u2)>

(88.24)

which is solved by the Feautrier method (cf. $83). Here Ld+( L/z) is the

residual error in the transfer and constraint equations for the current
solution ~~.,.(112); as L ~ O, the corrections 8* ~ O.

Mathematically the complete linearization method is merely a multi-

dimensional Newton-Raphson iteration; at each stage the equations are
internally consistent to first order. But it is extremely important to ap-

preciate the system’s physical content. Thus the linearized rate equations
provide an algorithm that describes how photons are shuffled about within

the collective photon pool in response to a change in material properties,
or, reciprocally, how the material responds to a change in the radiation
field. The linearized hydrostatic and radiative equilibrium equations de-
scribe how the pressure and temperature respond to locaf changes in the
radiation field or material properties. Local changes are coupled to all
other points in the mediulm via the tridiagonal linearized hydrostatic and
transfer equations. This linearization correctly handles both local and
global coupling, and experience shows it to be an effective tool for solving

the problem.
The iteration scheme starts from an initial model constructed assuming

LTE and adopting the grey temperature distribution on the Rosseland
mean scale [cf. (82.23)]. The hydrostatic equation is integrated step by step
for this T(7~), and from N and T one determines n: for all atomic levels at
all depths. Using the Iinearization procedure, the model is adjusted to give
strict radiative equilibrium for the actual nongrey oPacity, still assuming
LTE. To obtain a non-LTE model, the Saha-Boltzman n relations are
replaced by the statistical equilibrium equations.

After each linearization step, all occupation numbers are updated using

the new temperature, density, and radiation field; new Eddi ngton factors
are then determined from a formal solution, and the procedure is iterated
to convergence. If the Eddington factors were known and fixed, con-
vergence would be quadratic; in practice the need to update Eddington
factors slows the convergence rate, but errors usually diminish substantially
at each iteration. Further details are given in (M2, Chap. 7), (M3), and the
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references cited therein. Note that for LTE models the Rybicki scheme is
more efficient than the Feautner scheme [see (Gl) or (M2, 180–1.85)].

We now have all of the ingredients needed to desc]-ibe radiative transfer

and the interaction between radiation and material. In the next chapter we
apply this knowledge to the dynamics of radiating fluids.
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